Universal CMDB

Software Version: 10.31

Hardening Guide

Document Release Date: December 2016
Software Release Date: December 2016
Legal Notices

Warranty
The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Copyright Notice
© 2002 - 2016 Hewlett Packard Enterprise Development LP

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.
Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.
UNIX® is a registered trademark of The Open Group.

Documentation Updates
To check for recent updates or to verify that you are using the most recent edition of a document, go to: https://softwaresupport.hpe.com/.
This site requires that you register for an HP Passport and to sign in. To register for an HP Passport ID, click Register on the HP Software Support site or click Create an Account on the HP Passport login page.
You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HPE sales representative for details.

Support
Visit the HPE Software Support site at: https://softwaresupport.hpe.com/.
This website provides contact information and details about the products, services, and support that HPE Software offers.
HPE Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed to manage your business. As a valued support customer, you can benefit by using the support website to:
- Search for knowledge documents of interest
- Submit and track support cases and enhancement requests
- Download software patches
- Manage support contracts
- Look up HPE support contacts
- Review information about available services
- Enter into discussions with other software customers
- Research and register for software training

Most of the support areas require that you register as an HP Passport user and to sign in. Many also require a support contract. To register for an HP Passport ID, click Register on the HPE Support site or click Create an Account on the HP Passport login page.
To find more information about access levels, go to: https://softwaresupport.hp.com/web/softwaresupport/access-levels.

HPSW Integrations Catalog accesses the new HPSW Integrations and Solutions Catalog website. This site enables you to explore HPE Product Solutions to meet your business needs, includes a full list of integrations between HPE Products, as well as a listing of ITIL Processes. The URL for this website is https://softwaresupport.hpe.com/km/KM01702731.
Contents

Chapter 1: Introduction to Hardening ... 8
Hardening Overview ... 8
Hardening Preparations ... 9
Deploying UCMDB in a Secure Architecture 9
System Access ... 10
 Java JMX Access Hardening ... 11
 Changing System User Name or Password for the JMX Console 12
 Changing the HP Universal CMDB Server Service User 14
 How to Encrypt the Database Password for Configuration Manager ... 16
 Parameters for Configuration Manager Database Password
 Encryption ... 16
 How to Enable Remote Access to the JMX Console 18
 Using HTTPS Port 8453 as Default for Data Flow Probe 19

Chapter 2: Enabling Secure Sockets Layer (SSL) Communication 20
 Enable SSL on the Server Machine With a Self-Signed Certificate -
 UCMDB .. 20
 Enable SSL on the Server Machine with a Self-Signed Certificate -
 Configuration Manager ... 22
 Enable SSL on the Server Machine With a Certificate from a Certification
 Authority - UCMDB .. 24
 Enable SSL on the Server Machine with a Certificate from a Certification
 Authority - Configuration Manager .. 25
 Enable SSL on the Client Machines - UCMDB 27
 Enable SSL with a Client Certificate - Configuration Manager 28
 Enable SSL on the Client SDK .. 29
 Enable Mutual Certificate Authentication for SDK 30
 Configure CAC (Smart Card / PKI Authentication) Support on UCMDB 32
 Configure CAC (Smart Card / PKI Authentication) Support for the
 Embedded UCMDB Browser .. 35
 Change the Server Keystore Password 36
 Enable or Disable HTTP/HTTPS Ports 38
 Map the UCMDB Web Components to Ports 39
 Configure Configuration Manager to Work with UCMDB Using SSL 40
Enable the UCMDB KPI Adapter to be used with SSL .. 42
Configure SSL Support for the UCMDB Browser .. 42

Chapter 3: Using a Reverse Proxy ... 44
Reverse Proxy Overview .. 44
Security Aspects of Using a Reverse Proxy Server 45
Configure a Reverse Proxy .. 46
Distributed Denial of Service Attack Protection ... 49
Connect the Data Flow Probe by Reverse Proxy or Load Balancer Using Mutual Authentication ... 50
Connect the Data Flow Probe by Reverse Proxy and Self-signed Certificate ... 52
Configure CAC Support on UCMDB by Reverse Proxy 58

Chapter 4: Data Flow Credentials Management ... 64
Data Flow Credentials Management Overview ... 65
Basic Security Assumptions ... 66
Data Flow Probe Running in Separate Mode .. 66
Keeping the Credentials Cache Updated .. 67
Synchronizing All Probes with Configuration Changes 67
Secured Storage on the Probe ... 68
Viewing Credentials Information ... 68
Updating Credentials .. 69
Configure Confidential Manager Client Authentication and Encryption Settings .. 70
Configure LW-SSO Settings ... 70
Configure Confidential Manager Communication Encryption 70
Configure Confidential Manager Client Authentication and Encryption Settings Manually on the Probe .. 72
Disable Automatic Synchronization of the Confidential Manager Client Authentication and Encryption Settings Between the Server and Probes 72
Configure Confidential Manager Client Authentication and Encryption Settings on the Probe .. 73
Configure Confidential Manager Communication Encryption on the Probe .. 73
Configure the Confidential Manager Client Cache 74
Configure the Confidential Manager Client’s Cache Mode on the Probe 75
Configure the Confidential Manager Client’s Cache Encryption Settings on the Probe .. 75
Export and Import Credential and Range Information in Encrypted Format .. 77
Remove Credential and Range Information by Domain Name .. 78
Change Confidential Manager Client Log File Message Level ... 78
 Confidential Manager Client Log File ... 79
 LW-SSO Log File ... 79
Generate or Update the Encryption Key .. 80
 Generate a New Encryption Key .. 81
 Update an Encryption Key on a UCMDB Server .. 82
 Update an Encryption Key on a Probe ... 83
Manually Change the Encryption Key when the Probe Manager and Probe Gateway are Installed on Separate Machines ... 83
Define Several JCE Providers .. 84
Confidential Manager Encryption Settings ... 84
Troubleshooting and Limitations - Data Flow Credentials Management .. 86
Chapter 5: Data Flow Probe Hardening ... 87
Modify the PostgreSQL Database Encrypted Password ... 88
 The clearProbeData Script: Usage .. 89
Set the JMX Console Encrypted Password ... 89
Set the UpLoadScanFile Password .. 91
Remote Access to the PostgreSQL Server .. 92
Enable Basic Authentication between UCMDB Server and Data Flow Probe 92
 Enable Basic Authentication .. 93
 Change Credentials for Basic Authentication .. 93
 Configure User Name and Password on a New Probe .. 93
Configure Basic Authentication for Upgraded Data Flow Probes (Separate Mode) Using Port 1741 or 1742 .. 94
Enable SSL between UCMDB Server and Data Flow Probe ... 95
 Overview ... 96
 Keystores and Truststores ... 96
 Enable SSL with Server (One-Way) Authentication ... 97
 Enable Mutual (Two-Way) Certificate Authentication ... 100
How to Change the aioptionrc File Permission for Agents or Scanners .. 108
Encrypt the Probe Keystore and Truststore Passwords .. 109
Server and Data Flow Probe Default Keystore and Truststore ... 109
UCMDB Server .. 110
Data Flow Probe ... 110
How to Change the aioptionrc File Permission for Agents or Scanners111
Create a Keystore for the Data Flow Probe ..111
Set Master Key for Password Encryption on Data Flow Probe112
Enable Secure Communication between Universal Discovery Agents and Data Flow Probes Using CA-Signed Certificates113

Chapter 6: Lightweight Single Sign-On (LW-SSO) Authentication 118
LW-SSO Authentication Overview ...118
LW-SSO System Requirements ...119
LW-SSO Security Warnings ... 120
Troubleshooting and Limitations - LW-SSO Authentication121
 Known Issues ..121
 Limitations ...122

Chapter 7: HPE Universal CMDB Login Authentication 124
Setting Up an Authentication Method ... 124
Enabling Login to HPE Universal CMDB with LW-SSO125
Setting a Secure Connection with the SSL (Secure Sockets Layer) Protocol ..126
Using the JMX Console to Test LDAP Connections 127
How to Enable HTTP Communication for HPE Universal CMDB127
Hybrid User Management with Multiple User Repositories 128
How to Define LDAP Servers and Enable LDAP Authentication Method .. 129
LDAP Authentication Settings - Example .. 132
Retrieving Current LW-SSO Configuration in Distributed Environment133
User Lockout Mechanism ...133

Chapter 8: Confidential Manager ... 135
Confidential Manager Overview ... 135
Security Considerations .. 135
Configure the HPE Universal CMDB Server136
Definitions ...137
Encryption Properties ..138

Chapter 9: High Availability Hardening ... 140
Cluster Authentication .. 140
Cluster Message Encryption ... 141
Changing the Key in the key.bin ...142

Chapter 10: Database Hardening ... 143
How to Mark Sensitive Settings and Enable Storing Encrypted Data in the Database Using JMX ...143
Configure UCMDB to Connect Securely to Microsoft SQL Server145
Configure Universal CMDB and Configuration Manager to Support Oracle Advanced Security Option (ASO) ..146
Send documentation feedback ..150
Chapter 1: Introduction to Hardening

This chapter includes:

- Hardening Overview .. 8
- Hardening Preparations .. 9
- Deploying UCMDB in a Secure Architecture ... 9
- System Access ... 10
 - Java JMX Access Hardening .. 11
 - Changing System User Name or Password for the JMX Console ... 12
 - Changing the HP Universal CMDB Server Service User ... 14
 - How to Encrypt the Database Password for Configuration Manager 16
 - How to Enable Remote Access to the JMX Console ... 18
 - Using HTTPS Port 8453 as Default for Data Flow Probe ... 19

Hardening Overview

This section introduces the concept of a secure Universal CMDB application and discusses the planning and architecture required to implement security. It is highly recommended that you read this section before proceeding to the hardening discussion in the following sections.

Universal CMDB is designed so that it can be part of a secure architecture, and can therefore meet the challenge of dealing with the security threats to which it might be exposed.

The hardening guidelines deal with the configuration required to implement a more secure (hardened) Universal CMDB.

The hardening information provided is intended primarily for Universal CMDB administrators who should familiarize themselves with the hardening settings and recommendations prior to beginning the hardening procedures.

It is highly recommended that you use a reverse proxy with Universal CMDB to achieve a secure architecture. For details on configuring a reverse proxy for use with Universal CMDB, see “Using a Reverse Proxy” on page 44.

If you must use another type of secure architecture with Universal CMDB other than described in this document, contact HP Software Support to determine which architecture is the best one for you to use.
For details on hardening the Data Flow Probe, see “Data Flow Probe Hardening” on page 87.

Note:

- The hardening procedures are based on the assumption that you are implementing only the instructions provided in these chapters, and that you are not performing other hardening steps documented elsewhere.

- Where the hardening procedures focus on a particular distributed architecture, this does not imply that this is the best architecture to fit your organization’s needs.

- It is assumed that the procedures included in the following chapters are to be performed on machines dedicated to HP Universal CMDB. Using the machines for other purposes in addition to HP Universal CMDB may yield problematic results.

- The hardening information provided in this section is not intended as a guide to making a security risk assessment for your computerized systems.

Hardening Preparations

- Evaluate the security risk/security state for your general network, and use the conclusions when deciding how to best integrate Universal CMDB into your network.

- Develop a good understanding of the Universal CMDB technical framework and Universal CMDB security capabilities.

- Review all the hardening guidelines.

- Verify that Universal CMDB is fully functioning before starting the hardening procedures.

- Follow the hardening procedure steps chronologically in each chapter. For example, if you decide to configure the Universal CMDB server to support SSL, read “Enabling Secure Sockets Layer (SSL) Communication” on page 20 and then follow all the instructions chronologically.

- Universal CMDB does not support basic authentication with blank passwords. Do not use a blank password when setting basic authentication connection parameters.

Tip: Print out the hardening procedures and check them off as you implement them.

Deploying UCMDB in a Secure Architecture

Several measures are recommended to securely deploy your HP Universal CMDB servers:
• **DMZ architecture using a firewall**
 The secure architecture referred to in this document is a typical DMZ architecture using a device as a firewall. The basic concept of such an architecture is to create a complete separation, and to avoid direct access between the Universal CMDB clients and the Universal CMDB server.

• **Secure browser**
 Internet Explorer and Firefox in a Windows environment must be configured to securely handle Java scripts, applets, and cookies.

• **SSL communication protocol**
 Secure Sockets Layer protocol secures the connection between the client and the server. URLs that require an SSL connection use a secure version (HTTPS) of the Hypertext Transfer Protocol. For details, see "Enabling Secure Sockets Layer (SSL) Communication" on page 20.

• **Reverse proxy architecture**
 One of the more secure and recommended solutions suggests deploying Universal CMDB using a reverse proxy. Universal CMDB fully supports secure reverse proxy architecture. For details, see "Using a Reverse Proxy" on page 44.

• **Advanced Security Option (ASO) in Oracle**
 ASO provides encrypted communication between the server and the database. For details, see "Configure Universal CMDB and Configuration Manager to Support Oracle Advanced Security Option (ASO) " on page 146

System Access

This chapter includes:

- Java JMX Access Hardening ... 11
- Changing System User Name or Password for the JMX Console 12
- Changing the HP Universal CMDB Server Service User .. 14
- How to Encrypt the Database Password for Configuration Manager 16
- How to Enable Remote Access to the JMX Console ... 18
- Using HTTPS Port 8453 as Default for Data Flow Probe 19
Java JMX Access Hardening

Note: The procedure described here can also be used for the Data Flow Probe JMX.

In order to ensure that the JMX RMI port is accessible only when providing user credentials, perform the following procedure:

1. In the wrapper.conf file on the server, located at $C:/hp/UCMDB/UCMDBServer/bin/$, set the following:

 `wrapper.java.additional.16=-Dcom.sun.management.jmxremote.authenticate=true`

 This setting requires the JMX to ask for authentication.

 ○ For the Data Flow Probe JMX, perform the following:

 In the files WrapperGateway.conf and WrapperManager.conf, located at

 `$C:/hp/UCMDB/DataFlowProbe/bin/$`, set the following:

 `wrapper.java.additional.17=-Dcom.sun.management.jmxremote.authenticate=true`

2. Rename the file jmxremote.password.template (located at: $C:/hp/UCMDB/UCMDBServer/bin/jre/lib/management/) to jmxremote.password.

 Note: For the Data Flow Probe JMX, this file is located at:

3. In jmxremote.password, add passwords for the roles monitorRole and controlRole.

 For example:

 `monitorRole QED`

 `controlRole R&D`

 would assign the password QED to monitorRole and the password R&D to controlRole.

 Note: Ensure that only the owner has read and write permissions on jmxremote.password because it contains the passwords in clear text. The file owner must be the same user under which UCMDB Server is running.

4. In the file jmxremote.access (located at

 `$C:/hp/UCMDB/UCMDBServer/bin/jre/lib/management/`), assign access to monitorRole and controlRole.

 For example:
monitorRole readonly

controlRole readwrite

would assign read-only access to monitorRole and read-write access to controlRole.

Note: For the Data Flow Probe JMX, this file is located at:
C:\hp\UCMDB\DataFlowProbe\bin\jre\lib\management\.

5. Secure files as follows:

- **For Windows only:** Run the following commands from the command line to secure files:

  ```
  icacls jmxremote.password /grant Administrator:F
  icacls jmxremote.access /grant Administrator:R
  ```

 where <username> is the file owner visible in the properties of both files. Open properties of these files and ensure that they are correct and have only one owner.

- **For Solaris and Linux operating systems:** Set the file permissions for the password file by running:

  ```
  chmod 600 jmxremote.password
  ```

6. **For Service Pack upgrades, Server migrations and Disaster Recovery:** Change ownership of the file jmxremote.access (located at C:\hp\UCMDB\UCMDBServer\bin\jre\lib\management\) to the operating system user running the upgrade or migration installation.

Note:

- For the Data Flow Probe JMX, this file is located at:
 C:\hp\UCMDB\DataFlowProbe\bin\jre\lib\management\.

- Before uninstalling the product, edit the file permissions for <UMCDB installation folder>\bin\jre\lib\management\jmxremote.password so the user you are logged in with can edit it.

Changing System User Name or Password for the JMX Console

The JMX console uses system users, that is, cross-customer users in a multi-customer environment. You can log in to the JMX console with any system user name. The default name is **sysadmin**.

You change the password either through the JMX console or through the Server Management tool.
To change the default system user name or password through the JMX console:

1. Launch a Web browser and enter the following address: https://localhost:8443/jmx-console.
2. Enter the JMX console authentication credentials.
3. Locate UCMDB:service=Authorization Services and click the link to open the Operations page.
4. Locate the resetPassword operation.
 - In the userName field, enter sysadmin.
 - In the password field, enter a new password.

Note: The default password policy requires the password to include at least one of each of the four following types of characters:
- Uppercase alphabetic characters
- Lowercase alphabetic characters
- Numeric characters
- Symbol characters ,|\._?&%=+[]()

It also requires the password to adhere to the minimum length, which is set by the Password minimum length infrastructure setting.

5. Click Invoke to save the change.

To change the default system user name or password through the Server Management tool:

1. For Windows: run the following file: C:\hp\UCMDB\UCMDBServer\tools\server_management.bat.
 For Linux: Run server_management.sh located in the following folder: /opt/hp/UCMDB/UCMDBServer/tools/.
2. Log in to the tool with the authentication credentials: sysadmin/<password>.
3. Click the Users link.
4. Select the system user and click Change password for logged-on user.
5. Enter the old and new passwords and click OK.
Changing the HP Universal CMDB Server Service User

On a Windows platform, the HP Universal CMDB service, which runs all HP Universal CMDB services and processes, is installed when you run the Server and Database Configuration utility. By default, this service runs under the local system user. However, you may need to assign a different user to run the service (for example, if you are using NTLM authentication).

The user you assign to run the service must have the following permissions:

- sufficient database permissions (as defined by the database administrator)
- sufficient network permissions
- administrator permissions on the local server

To change the service user:

1. Disable HP Universal CMDB through the Start menu (Start > All Programs > HP UCMDB > Stop HP Universal CMDB Server) or by stopping the HP Universal CMDB Server service. For details, see the section describing how to start and stop the UCMDB Server Service in the HPE Universal CMDB Administration Guide

2. In the Windows Services window, double-click UCMDB_Server. The UCMDB_Server Properties (Local Computer) dialog box opens.

3. Click the Log On tab.
4. Select This account and browse to choose another user from the list of valid users on the machine.

5. Enter the selected user’s Windows password and confirm this password.

6. Click Apply to save your settings and OK to close the dialog box.

7. Enable HP Universal CMDB through the Start menu (Start > All Programs > HP UCMDB > Start HP Universal CMDB Server) or by starting the HP Universal CMDB Server service. For details, see the section describing how to start and stop the UCMDB Server Service in the HPE Universal CMDB Administration Guide.
How to Encrypt the Database Password for Configuration Manager

The CM database password is stored in the `<Configuration_Manager_installation_directory>\conf\database.properties` file. If you want to encrypt the password, our default encryption algorithm complies with the standards of FIPS 140-2.

The encryption is accomplished by means of a key, through which the password is encrypted. The key itself is then encrypted using another key, known as a master key. Both keys are encrypted using the same algorithm. For details on the parameters used in the encryption process, see "Parameters for Configuration Manager Database Password Encryption" below.

Caution: If you change the encryption algorithm, all previously encrypted passwords are no longer usable.

To change the encryption of your database password:

1. Open the `<Configuration_Manager_installation_directory>\conf\database.properties` file and edit the following fields:
 - `engineName`. Enter the name of the encryption algorithm.
 - `keySize`. Enter the size of the master key for the selected algorithm.

2. Run the `generate-keys.bat` script, which creates the `<Configuration_Manager_installation_directory>\security\encrypt_repository` file and generates the encryption key.

3. Run the `bin\encrypt-password.bat` utility to encrypt the password. Set the `-h` flag to see the available options.

4. Copy the result of the password encryption utility and paste the resulting encryption into the `conf\database.properties` file.

Parameters for Configuration Manager Database Password Encryption

The following table lists the parameters included in the `encryption.properties` file used for CM database password encryption. For details on encrypting the database password, see "How to Encrypt the Database Password for Configuration Manager" above.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cryptoSource</td>
<td>Indicates the infrastructure implementing the encryption algorithm. The</td>
</tr>
<tr>
<td></td>
<td>available options are:</td>
</tr>
<tr>
<td></td>
<td>- lw. Uses Bouncy Castle lightweight implementation (Default option)</td>
</tr>
<tr>
<td></td>
<td>- jce. Java Cryptography Enhancement (standard Java cryptography</td>
</tr>
<tr>
<td></td>
<td>infrastructure)</td>
</tr>
<tr>
<td>storageType</td>
<td>Indicates the type of the key storage.</td>
</tr>
<tr>
<td></td>
<td>Currently, only binary file is supported.</td>
</tr>
<tr>
<td>binaryFileStorageName</td>
<td>Indicates the place in the file where the master key is stored.</td>
</tr>
<tr>
<td>cipherType</td>
<td>The type of the cipher. Currently, only <code>symmetricBlockCipher</code> is</td>
</tr>
<tr>
<td></td>
<td>supported.</td>
</tr>
<tr>
<td>engineName</td>
<td>The name of the encryption algorithm.</td>
</tr>
<tr>
<td></td>
<td>The following options are available:</td>
</tr>
<tr>
<td></td>
<td>- AES. American Encryption Standard. This encryption is FIPS 140-2</td>
</tr>
<tr>
<td></td>
<td>compliant. (Default option)</td>
</tr>
<tr>
<td></td>
<td>- Blowfish</td>
</tr>
<tr>
<td></td>
<td>- DES</td>
</tr>
<tr>
<td></td>
<td>- 3DES. (FIPS 140-2 compliant)</td>
</tr>
<tr>
<td></td>
<td>- Null. No encryption</td>
</tr>
<tr>
<td>keySize</td>
<td>The size of the master key. The size is determined by the algorithm:</td>
</tr>
<tr>
<td></td>
<td>- AES. 128, 192, or 256 (Default option is 256)</td>
</tr>
<tr>
<td></td>
<td>- Blowfish. 0-400</td>
</tr>
<tr>
<td></td>
<td>- DES. 56</td>
</tr>
<tr>
<td></td>
<td>- 3DES. 156</td>
</tr>
<tr>
<td>encodingMode</td>
<td>The ASCII encoding of the binary encryption results.</td>
</tr>
<tr>
<td></td>
<td>The following options are available:</td>
</tr>
<tr>
<td></td>
<td>- Base64 (Default option)</td>
</tr>
<tr>
<td></td>
<td>- Base64Url</td>
</tr>
<tr>
<td></td>
<td>- Hex</td>
</tr>
<tr>
<td>algorithmModeName</td>
<td>The mode of the algorithm. Currently, only CBC is supported.</td>
</tr>
<tr>
<td>algorithmPaddingName</td>
<td>The padding algorithm used.</td>
</tr>
<tr>
<td></td>
<td>The following options are available:</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>PKCS7Padding</td>
<td>(Default option)</td>
</tr>
<tr>
<td>PKCS5Padding</td>
<td></td>
</tr>
<tr>
<td>jceProviderName</td>
<td>The name of the JCE encryption algorithm.</td>
</tr>
<tr>
<td>Note:</td>
<td>Only relevant when crypSource is jce. For lw, engineName is used.</td>
</tr>
</tbody>
</table>

How to Enable Remote Access to the JMX Console

Starting from version 10.30, the JMX console is secured by restricting access to it to server localhost only. Also, the JMX Console is no longer accessible through HTTP protocol, even if it is specifically re-enabled.

Administrators attempting to access the JMX console from a remote machine may encounter all remote access attempts being redirected with no error.

The following message will be shown: "Please wait, you will be redirected in a moment."

However, you can still enable remote access to JMX console when necessary.

To enable remote access to the JMX console,

Note: This configuration affects both the UCMDB server JMX console and the probe JMX console.

1. On the UCMDB server, launch the Web browser and enter the following address:

 https://localhost:8443/jmx-console

 You may have to log in with a user name and password.

2. Locate **UCMDB:service=Settings Services** and click the link to jump to the Operations table.

3. Locate the **setGlobalSettingValue** operation.

4. Provide the following parameter values:

   ```
   name: restrict.jmx.to.localhost  
   value: false
   ```

 Note: Starting from UCMDB version 10.30, the default value is **true**, which disables remote
access to the JMX console, you can only access the JMX console from localhost.

5. Click **Invoke**.

6. Restart the UCMDB server.

 The change takes effect and affects both the UCMDB server JMX console and the probe JMX console.

Using HTTPS Port 8453 as Default for Data Flow Probe

Starting with version 10.31, to provide secure access to the Data Flow Probe JMX console, for fresh installed Probes, by default the `jettyHttpsEnabled` setting in the Probe configuration file `DataFlowProbe.properties` is **true** and the HTTPS port 8453 (`jettyGtwHttpsPort`) is used for the Probe server, with the HTTP port 1977 being disabled.

To access the Probe JMX console, on the probe machine, launch the Web browser and enter the following address: **https://localhost:8453**. For more information about accessing probe JMX console, see "Introduction" in the *HPE Universal CMDB JMX Reference Guide*.

Note:

- For off-site scan file saving, only the HTTPS port 8453 can be used. If you want to use HTTP port 1977 for scan files saving, set `jettyHttpsEnabled` to **false**.

- For probes and Integration Service upgraded from a previous version, your custom settings are retained. This default port change only applies to fresh installed probes of version 10.31.

- Separate mode probes (whether in FIPS mode or not) do not support HTTPS communication. You need to set `jettyHttpsEnabled` to **false** after installing probes in separate mode.
Chapter 2: Enabling Secure Sockets Layer (SSL) Communication

This chapter includes:

- Enable SSL on the Server Machine With a Self-Signed Certificate - UCMDB ...20
- Enable SSL on the Server Machine with a Self-Signed Certificate - Configuration Manager22
- Enable SSL on the Server Machine With a Certificate from a Certification Authority - UCMDB24
- Enable SSL on the Server Machine with a Certificate from a Certification Authority - Configuration Manager ... 25
- Enable SSL on the Client Machines - UCMDB ...27
- Enable SSL with a Client Certificate - Configuration Manager ..28
- Enable SSL on the Client SDK ...29
- Enable Mutual Certificate Authentication for SDK ..30
- Configure CAC (Smart Card / PKI Authentication) Support on UCMDB ..32
- Configure CAC (Smart Card / PKI Authentication) Support for the Embedded UCMDB Browser35
- Change the Server Keystore Password ..36
- Enable or Disable HTTP/HTTPS Ports ..38
- Map the UCMDB Web Components to Ports ..39
- Configure Configuration Manager to Work with UCMDB Using SSL ..40
- Enable the UCMDB KPI Adapter to be used with SSL ..42
- Configure SSL Support for the UCMDB Browser ..42

Enable SSL on the Server Machine With a Self-Signed Certificate - UCMDB

These sections explain how to configure HP Universal CMDB to support communication using the Secure Sockets Layer (SSL) channel.
1. **Prerequisites**
 a. Before starting the following procedure, remove the old server.keystore located in
 `C:\hp\UCMDB\UCMDBServer\conf\security\server.keystore`.
 b. Place the HP Universal CMDB keystore (JKS type) in the
 `C:\hp\UCMDB\UCMDBServer\conf\security` folder.

2. **Generate a Server Keystore**
 a. Create a keystore (JKS type) with a self-signed certificate and matching private key:
 1. From `C:\hp\UCMDB\UCMDBServer\bin\jre\bin`, run the following command:
         ```
         keytool -genkey -alias hpcert -validity 365 -keyalg RSA -keysize 2048
         -keystore C:\hp\UCMDB\UCMDBServer\conf\security\server.keystore
         ```
 The console dialog box opens.
 2. Enter the keystore password. If the password has changed, run the
 `changeKeystorePassword` JMX operation, in `UCMDB:service=Security Services`. If
 the password has not changed, use the default `hppass` password.
 3. Answer the question, **What is your first and last name?** Enter the HP Universal CMDB
 Web server name. Enter the other parameters according to your organization.
 4. Enter a key password. The key password MUST be the same as the keystore password.
 A JKS keystore is created named `server.keystore` with a server certificate named `hpcert`.
 b. Export the self-signed certificate to a file:
 1. From `C:\hp\UCMDB\UCMDBServer\bin\jre\bin`, run the following command:
         ```
         keytool -export -alias hpcert -keystore
         C:\hp\UCMDB\UCMDBServer\conf\security\server.keystore -storepass <your
         password> -file hpcert.crt
         ```

3. **Place the Certificate in the Client’s Trusted Store**
 After generating `server.keystore` and exporting the server certificate, for every client that needs to
 communicate with HPE Universal CMDB over SSL using this self-signed certificate, place this
 certificate in the client’s trusted stores by running the following command:
   ```
   keytool -import -trustcacerts -keystore
   C:\HP\UCMDB\UCMDBServer\conf\security\server.truststore -storepass <your
   password> -alias hpcert -file hpcert.crt
   ```
Note: There can be only one server certificate in server.keystore.

4. Disable HTTP Port 8080
 For details, see "Enable or Disable HTTP/HTTPS Ports" on page 38.

 Note: Check that HTTPS communication works before closing the HTTP port.

5. Restart the Server

6. Display HP Universal CMDB
 To verify that the UCMDB Server is secure, enter the following URL in the Web browser:
 https://<UCMDB Server name or IP address>:8443/ucmdb-ui.

Enable SSL on the Server Machine with a Self-Signed Certificate - Configuration Manager

This section explains how to configure Configuration Manager to support authentication and encryption using the Secure Sockets Layer (SSL) channel.

Configuration Manager uses Tomcat 7.0.19 as the application server.

1. Prerequisites (not relevant if installing for the first time)
 Before starting the following procedure, remove the old tomcat.keystore file located in the
 <Configuration_Manager_installation_directory>/javalwindows\x86_64\lib\security\ folder
 or the <Configuration_Manager_installation_directory>/javalinux\x86_64\lib\security\ folder
 (whichever is relevant), if it exists.

2. Generate a Server Keystore
 Create a keystore (JKS type) with a self-signed certificate and matching private key:
 ○ From <Configuration_Manager_installation_directory>/javalwindows\x86_64\bin or
 <Configuration_Manager_installation_directory>/javalinux\x86_64\bin, run the following command:
 keytool -genkey -alias tomcat -keyalg RSA -keystore ..\lib\security\tomcat.keystore
 The console dialog box opens.
 ○ Enter the keystore password. If the password has changed, change it manually in the file.
1. Answer the question, **What is your first and last name?** Enter the Configuration Manager Web server name. Enter the other parameters according to your organization.

2. Enter a key password. The key password MUST be the same as the keystore password.

 A JKS keystore is created named **tomcat.keystore** with a server certificate named **hpcert**.

3. **Place the Certificate in the Client's Trusted Store**

 Add the certificate to the client's trusted stores in Internet Explorer on your computer (**Tools > Internet Options > Content > Certificates**). If not, you will be prompted to do so the first time you attempt to use Configuration Manager.

 Limitation: There can be one server certificate only in **tomcat.keystore**.

4. **Modify the server.xml File**

 Open the **server.xml** file, located in `<Configuration_Manager_installation_directory>\servers\server-0\conf`. Locate the section beginning with `Connector port="8143"` which appears in comments. Activate the script by removing the comment character and add the following attributes to the HTTPS connector:

 - `keystoreFile="<tomcat.keystore file location>"` (see step 2)
 - `keystorePass="<password>"

 Comment out the following line:

   ```xml
   <Listener className="org.apache.catalina.core.AprLifecycleListener"
   SSLEngine="on" />
   ```

 Note: You must not block the HTTP connection port. If you want to block HTTP communication, you can use a firewall for this purpose.

5. **Restart the Server**

 Restart the Configuration Manager server.

6. **Verify the Server Security**

 To verify that the Configuration Manager Server is secure, enter the following URL in the Web browser: **https://<Configuration Manager Server name or IP address>:8143/cnc**.

7. In Configuration Manger, go to **Settings>Application Management>Mail Settings** and change the protocol and port in **Configuration Manager full URL**, according to the values above.
8. In UCMDB, go to **Infrastructure Settings Manager > General Settings** and change the protocol and port in the **Configuration Manager URL**, according to the values above.

 Tip: If you fail to establish a connection, try using a different browser or upgrade to a newer version of the browser.

Enable SSL on the Server Machine With a Certificate from a Certification Authority - UCMDB

To use a certificate issued by a Certification Authority (CA), the keystore must be in Java format. The following example explains how to format the keystore for a Windows machine.

1. **Prerequisites**

 Before starting the following procedure, remove the old **server.keystore** located in

   ```
   C:\hp\UCMDB\UCMDBServer\conf\security\server.keystore
   ```

2. **Generate a Server Keystore**

 a. Generate a CA signed certificate and install it on Windows.

 b. Export the certificate into a *pfx file (including private keys) using Microsoft Management Console (**mmc.exe**).

 Enter any string as the password for the **pfx file.** (You are asked for this password when converting the keystore type to a JAVA keystore.) The **pfx** file now contains a public certificate and a private key and is password protected.

 c. Copy the **pfx file** you created to the following folder:

      ```
      C:\hp\UCMDB\UCMDBServer\conf\security
      ```

 d. Open the command prompt and change the directory to

      ```
      C:\hp\UCMDB\UCMDBServer\bin\jre\bin
      ```

 Change the keystore type from **PKCS12** to a JAVA keystore by running the following command:

      ```
      keytool -importkeystore -srckeystore c:\hp\UCMDB\UCMDBServer\conf\security\<pfx file name> -srcstoretype PKCS12 -destkeystore server.keystore
      ```
You are asked for the source (.pfx) keystore password. This is the password you supplied when creating the pfx file in step b.)

e. Enter the destination keystore password. This password must be the same as defined previously in the changeKeystorePassword JMX method, in Security Services. If the password was not changed, use the default hppass password.

 | Note: The source keystore password must be the same as the destination keystore password.

f. After generating the certificate, disable HTTP port 8080. For details, see "Enable or Disable HTTP/HTTPS Ports" on page 38.

g. If you used a password other than hppass or the password used for the .pfx file, run the changeKeystorePassword JMX method and make sure that the key has the same password.

 | Note: Check that HTTPS communication works before closing the HTTP port.

3. Restart the Server

4. Verify the Server Security

 To verify that the UCMDB Server is secure, enter the following URL in the Web browser:
 https://<UCMDB Server name or IP address>:8443/ucmdb-ui.

 | Caution: There can be one server certificate only in server.keystore.

Enable SSL on the Server Machine with a Certificate from a Certification Authority - Configuration Manager

For Configuration Manager, in order to use a certificate issued by a Certification Authority (CA) the keystore must be in Java format. The following example explains how to format the keystore for a Windows machine.

1. Prerequisites

 Before starting the following procedure, remove the old tomcat.keystore file located in the
 <Configuration_Manager_installation_directory>\java\windows\x86_64\lib\security\ folder
or the `<Configuration Manager installation directory>`\java\linux\x86_64\lib\security\ folder (whichever is relevant), if it exists.

2. **Generate a Server Keystore**
 a. Generate a CA signed certificate and install it on Windows.
 b. Export the certificate into a *.pfx file (including private keys) using Microsoft Management Console (`mmc.exe`).

 Enter any string as the password for the pfx file. (You are asked for this password when converting the keystore type to a JAVA keystore.)

 The .pfx file now contains a public certificate and a private key and is password protected.

 Copy the .pfx file you created to the following folder: `<Configuration Manager installation directory>`\java\windows\x86_64\lib\security.
 c. Open the command prompt and change the directory to `<Configuration Manager installation directory>`\java\bin.

 Change the keystore type from PKCS12 to a JAVA keystore by running the following command:
      ```
      keytool -importkeystore -srckeystore `<Configuration Manager installation directory>`\conf\security\<pfx file name> -srcstoretype PKCS12 -destkeystore tomcat.keystore
      ```

 You are asked for the source (.pfx) keystore password. This is the password you supplied when creating the pfx file in step b.

3. **Modify the server.xml File**

 Open the `server.xml` file, located in `<Configuration Manager installation directory>`\servers\server-0\conf. Locate the section beginning with `Connector port="8143"`

 which appears in comments. Activate the script by removing the comment character and add the following two lines:
   ```
   keystoreFile="../java/lib/security/tomcat.keystore"
   keystorePass="password" />
   ```

 Comment out the following line:
   ```
   <Listener className="org.apache.catalina.core.AprLifecycleListener" SSLEngine="on" />
   ```
4. **Restart the Server**

 Restart the Configuration Manager server.

5. **Verify the Server Security**

 To verify that the Configuration Manager server is secure, enter the following URL in the Web browser: `https://<Configuration Manager Server name or IP address>:8143/cnc`.

6. In Configuration Manger, go to **Settings**>**Application Management**>**Mail Settings** and change the protocol and port in **Configuration Manager full URL**, according to the values above.

7. In UCMDB, go to **Infrastructure Settings Manager**>**General Settings** and change the protocol and port in **Configuration Manager URL**, according to the values above.

 Limitation: There can be one server certificate only in `tomcat.keystore`.

Enable SSL on the Client Machines - UCMDB

If the certificate used by the HP Universal CMDB Web server is issued by a well-known Certificate Authority (CA), it is most likely that your Web browser can validate the certificate without any further action.

If the CA is not trusted by the Web browser, you should either import the entire certificate trust path or import the certificate used by HP Universal CMDB explicitly into the browser’s truststore.

The following example demonstrates how to import the self-signed `hpcert` certificate into the Windows truststore to be used by Internet Explorer.

To import a certificate into the Windows truststore:

1. Locate and rename the `hpcert` certificate to `hpcert.cer`.

 In Windows Explorer, the icon shows that the file is a security certificate.

2. Double-click `hpcert.cer` to open the Internet Explorer Certificate dialog box.

3. Follow the instructions for enabling trust by installing the certificate with the Certificate Import Wizard.

 Note: Another method of importing the certificate issued by the UCMDB Server to the Web
browser is by logging in to UCMDB, and installing the certificate when the untrusted certificate warning is displayed.

Enable SSL with a Client Certificate - Configuration Manager

If the certificate used by the Configuration Manager Web server is issued by a well-known Certificate Authority (CA), it is most likely that your Web browser can validate the certificate without any further action.

If the CA is not trusted by the server trust store, import the CA certificate into the server trust store.

The following example demonstrates how to import the self-signed `hpcert` certificate into the server trust store (cacerts).

To import a certificate into the Server trust store:

1. On the client machine, locate and rename the `hpcert` certificate to `hpcert.cer`.

2. Copy `hpcert.cer` to the server machine in the `<Configuration_Manager_installation_directory>\java\windows\x86_64\bin` folder.

3. On the server machine, import the CA certificate into the trust store (cacerts) using the keytool utility with the following command:

   ```
   <Configuration_Manager_installation_directory>\java\bin\keytool.exe -import -alias hp -file hpcert.cer -keystore ..\lib\security\cacerts
   ```

4. Modify the `server.xml` file (located in the `<Configuration_Manager_installation_directory>\servers\server-0\conf` folder) as follows:
 a. Make the changes described in "Modify the server.xml File" on page 26.
 b. Right after those changes, add the following attributes to the HTTPS connector:

   ```
   truststoreFile="../../java/lib/security/cacerts"
   truststorePass="changeit"
   ```
 c. Set `clientAuth="true"`.

5. Verify the server security as described in "Verify the Server Security" on the previous page.
Enable SSL on the Client SDK

To enable SSL on the client SDK, you can utilize HTTPS transportation between the client SDK and the server SDK:

1. On the client machine, in the product that embeds the client SDK, locate the transportation setting and make sure it is configured to HTTPS, and not HTTP.

2. Download the CA certificate/self-signed public certificate to the client machine, and import it into the cacerts truststore on the JRE that is going to connect to the server.

Use the following command:

```
Keytool -import -alias <CA name> -trustcacerts -file <server public certificate path> -keystore <path to client jre trusted cacerts store (e.g. x:\program files\java\jre\lib\security\cacerts)>
```

To enable certificate validation on the client, start the JVM with the following system property setting to true:

"-DenableServerCertValidation=true"

Note: Enabling certificate validation also enables changing which SSL protocol is used (by default TLSv1.2 is used).

To enable hostname validation, first enable certificate validation:

1. Replace the server self-signed certificate with one that contains FQDN hostname in the common name field.

2. Add the certificate without the private key to all clients’ JRE trust stores (for all hosts and JVM versions used).

3. Start the clients with the following global property setting:

"-DenableServerCertHostValidation=true"

To change SSL protocol, first enable certificate validation and then add the property:
"-DsslProtocol=TLSv1.2"

To debug SSL connectivity issues, add the following parameter to system properties:

"-Djavax.net.debug=ssl"

Enable Mutual Certificate Authentication for SDK

This mode uses SSL and enables both server authentication by the UCMDB and client authentication by the UCMDB-API client. Both the server and the UCMDB-API client send their certificates to the other entity for authentication.

Note:

- The following method of enabling SSL on the SDK with mutual authentication is the most secure of the methods and is therefore the recommended communication mode.
- The keystore used for client SDK must be in Java Keystore (JKS) format. The Java Cryptography Extension KeyStore (JCEKS) or other formats are not supported.
- The keystore used for SDK must contain only one key-pair and nothing else in it. The password for this key-pair must be the same as the one for keystore.

1. Harden the UCMDB-API client connector in UCMDB:
 a. Access the UCMDB JMX console: Launch a Web browser and enter the following address: https://<UCMDB machine name or IP address>:8443/jmx-console. You may have to log in with a user name and password (default is sysadmin/sysadmin).
 b. Locate **UCMDB:service=Ports Management Services** and click the link to open the Operations page.
 c. Locate the **PortsDetails** operation and click Invoke. Make a note of the HTTPS with client authentication port number. The default is 8444 and it should be enabled.
 d. Return to the Operations page.
 e. To map the ucmbd-api connector to the mutual authentication mode, invoke the **mapComponentToConnectors** method with the following parameters:
The following message is displayed:

Operation succeeded. Component ucmdb-api is now mapped to: HTTPS_CLIENT_AUTH ports.

f. Return to the Operations page.

2. Repeat **step 1** for the **ping** component.

3. Make sure the JRE that runs the UCMDB-API client has a keystore containing a client certificate.

 Note: The UCMDB-API client certificate must have the minimum size key no less than 2048 bits.

4. Export the UCMDB-API client certificate from its keystore.

5. Import the exported UCMDB-API client certificate to the UCMDB Server Truststore.

 a. On the UCMDB machine, copy the created UCMDB-API client certificate file to the following directory on UCMDB:

   ```
   C:\HP\UCMDB\UCMDBServer\conf\security
   ```

 b. Run the following command:

   ```
   C:\HP\UCMDB\UCMDBServer\bin\jre\bin\keytool.exe -import -v -keystore C:\HP\UCMDB\UCMDBServer\conf\security\server.truststore -file <exported UCMDB-api client certificate> -alias ucmdb-api
   ```

 c. Enter the UCMDB Server Truststore password (default **hppass**).

 d. When asked, **Trust this certificate?**, press **y** and then **Enter**.

 e. Make sure the output **Certificate** was added to the keystore.

6. Export the UCMDB server certificate from the server keystore.

 a. On the UCMDB machine, run the following command:

   ```
   C:\HP\UCMDB\UCMDBServer\bin\jre\bin\keytool.exe -export -alias hpcert -keystore C:\HP\UCMDB\UCMDBServer\conf\security\server.keystore -file C:\HP\UCMDB\conf\security\server.cert
   ```
b. Enter the UCMDB Server Truststore password (default hppass).

c. Verify that the certificate is created in the following directory:

C:\HP\UCMDB\UCMDBServer\conf\security\server.cert

7. Import the exported UCMDB certificate to the JRE of the UCMDB-API client truststore.

8. The certificate used by the API Client must contain in it’s Common Name (CN) field the name of a user that’s present in UCMDB. This user MUST have an EMPTY password and all required permissions for SDK access.

To set an empty password to an existing UCMDB user,

a. Go to JMX Console > UCMDB:service=URM Services > listResourceTypes.

b. Click Auth_USER.

c. Click your user and wait for the XML to load.

d. In the XML, replace the password with s39t3O*tfoZXg30xd/nvJGL5is8=.

e. Click Save resource.

9. Restart the UCMDB Server and the UCMDB-API client.

10. To connect from the UCMDB-API client to UCMDB-API server, use the following code:

```java
    UcmdbServiceProvider provider = UcmdbServiceFactory.getServiceProvider
            ("https", <SOME_HOST_NAME>, <HTTPS_WITH_CLIENT_AUTH_PORT_NUMBER
(default:8444>>);
    UcmdbService ucmdbService = provider.connect
            (provider.createCertificateCredentials(<TheClientKeystore.
            e.g: "c:\\client.keystore>, <KeystorePassword>),
            provider.createClientContext(<ClientIdentification>));
```

Configure CAC (Smart Card / PKI Authentication) Support on UCMDB

This section describes how to configure Smart Card Authentication or PKI Authentication (CAC) support on UCMDB.

Note: CAC support is only available when using Internet Explorer 10 or later.
1. Import the root CA and any intermediate certificates into the UCMDB Server Truststore as follows:
 a. On the UCMDB machine, copy the certificate files to the following directory on UCMDB:
 \C:\HP\UCMDB\UCMDBServer\conf\security
 Note: If your certificate is in Microsoft p7b format, you may need to convert it to PEM format.
 b. For each certificate, run the following command:
      ```
      C:\HP\UCMDB\UCMDBServer\bin\jre\bin\keytool.exe -import -v -keystore \
      C:\HP\UCMDB\UCMDBServer\conf\security\server.truststore -file 
      <certificate> -alias <certificate alias>
      ```
 c. Enter the UCMDB Server Truststore password (default hppass).
 d. When asked, Trust this certificate?, press y and then Enter.
 e. Make sure the output Certificate was added to the keystore.

2. Open the JMX console by launching the Web browser and entering the Server address, as follows: https://<UCMDB Server Host Name or IP>:8443/jmx-console.
 You may have to log in with a user name and password.

3. Under UCMDB, click **UCMDB:service=Ports Management Services** to open the Operations page.
 - (optional) Click ComponentsConfigurations. Do the following:
 - Set HTTPSClientAuthSetPort to 8444 and click Invoke.
 - Click Back to MBean.
 - Click mapComponentToConnectors. Do the following:
 - In the mapComponentToConnectors service, set componentName to ucmdb-ui.
 - Set only isHTTPSWithClientAuth to true, and click Invoke.
 - Click Back to MBean.
 - In the mapComponentToConnectors service, set componentName to root.
 - Set only isHTTPSWithClientAuth to true, and click Invoke.

4. Under UCMDB, click **UCMDB:service=Security Services** to open the Operations page. In the loginWithCAC service, do the following:
Set `loginWithCAC` to `true`, and click *Invoke*.

Note: If a user who is used in CAC login does not have permissions to access the UCMDB UI, then automatic login and display of a white page will not occur.

- Click *Back to MBean*.
- (optional) Click `usernameField` to specify the field from the certificate that will be used by UCMDB to extract a username, and click *Invoke*.

Note: If you do not specify a field, the default of `PRINCIPAL_NAME_FROM_SAN_FIELD` is used.

- Click *Back to MBean*.
- Click `pathToCRL` to set a path to an offline Certificate Revocation List (CRL) to be used if the online list (from the certificate) is not available, and click *Invoke*.

Note: When you work with a local CRL and there is a working Internet connection to the UCMDB server, the local CRL is used. The validation of any certificate (even if it is not revoked) fails in the following situations:
 - if the CRL path is set but the CRL file itself is missing
 - if the CRL is expired
 - if the CRL has an incorrect signature

If you do not set the path to an offline CRL and the UCMDB server cannot access the online CRL, all certificates that contain a CRL or OCSP URL are rejected (since the URL cannot be accessed, the revocation check fails). To give the UCMDB server access to the Internet, uncomment the following lines in the `wrapper.conf` file and provide a valid proxy and port:

```
#wrapper.java.additional.40=-Dhttp.proxyHost=<PROXY_ADDR>
#wrapper.java.additional.41=-Dhttp.proxyPort=<PORT>
#wrapper.java.additional.42=-Dhttps.proxyHost=<PROXY_ADDR>
#wrapper.java.additional.43=-Dhttps.proxyPort=<PORT>
```

- Click *Back to MBean*.
- (optional) Set `onlyCACCerts` to `true`, and click *Invoke*.

Set this operation to `true` to accept only certificates that come from a physical CAC device.

You should now be able to log into UCMDB with `https://<UCMDB Server Host Name or IP>:<domainname>:8444`.

Hardening Guide
Chapter 2: Enabling Secure Sockets Layer (SSL) Communication
5. Configure UCMDB to use LW-SSO authentication and restart the UCMDB Server.

For details on LW-SSO authentication, see "Enabling Login to HPE Universal CMDB with LW-SSO" on page 125.

Configure CAC (Smart Card / PKI Authentication) Support for the Embedded UCMDB Browser

This section describes how to configure Smart Card Authentication or PKI Authentication (CAC) support for the embedded UCMDB Browser.

Note: CAC support is only available when using Internet Explorer 10 or later.

1. Configure UCMDB to use LW-SSO authentication.

 For details on LW-SSO authentication, see "Enabling Login to HPE Universal CMDB with LW-SSO" in the *HPE Universal CMDB Hardening Guide*.

2. Import the root CA and any intermediate certificates into the UCMDB Server Truststore as follows:

a. On the UCMDB machine, copy the certificate files to the following directory on UCMDB:

   ```
   C:\HP\UCMDB\UCMDBServer\conf\security
   ```

 Note: If your certificate is in Microsoft p7b format, you may need to convert it to PEM format.

 b. For each certificate, run the following command:

   ```
   C:\HP\UCMDB\UCMDBServer\bin\jre\bin\keytool.exe -import -v -keystore C:\HP\UCMDB\UCMDBServer\conf\security\server.truststore -file <certificate> - alias <certificate alias>
   ```

 c. Enter the UCMDB Server Truststore password (default `hppass`).

 d. When asked, **Trust this certificate?**, press `y` and then `Enter`.

 e. Make sure the output **Certificate was added to the keystore.**

3. Open the JMX console by launching the Web browser and entering the Server address, as follows: `https://<UCMDB Server Host Name or IP>:8443/jmx-console`.
You may have to log in with a user name and password.

4. Under UCMDB, click UCMDB: service=Ports Management Services to open the Operations page.

5. Click mapComponentToConnectors. In the mapComponentToConnectors service, do the following:
 - Map ucmdb-ui
 - Set componentName to ucmdb-ui.
 - Set only isHTTPSWithClientAuth to true, and click Invoke.
 - Click Back to MBean.
 - Map ucmdb-browser
 - Set componentName to ucmdb-browser
 - Set only isHTTPSWithClientAuth to true, and click Invoke.
 - Click Back to MBean
 - Map root
 - Set componentName to root.
 - Set isHTTPSWithClientAuth and isHTTP to true, and click Invoke.

6. Under UCMDB, click UCMDB: service=Security Services to open the Operations page. In the loginWithCAC service, set loginWithCAC to true, and click Invoke.

 You should now be able to log into UCMDB with https://<UCMDB Server Host Name or IP>.<domainname>:8444.

7. Assign roles or rights for each UCMDB Browser user in the UCMDB Server, as they will be created without roles or rights.

8. Restart the UCMDB Server.

Change the Server Keystore Password

After installing the Server, the HTTPS port is open and the store is secured with a weak password (the default hppass). If you intend to work with SSL only, you must change the password.

The following procedure explains how to change the server.keystore password only. However, you should perform the same procedure for changing the server.truststore password.
Note: You must perform every step in this procedure.

1. Start the UCMDB Server.

2. Execute the password change in the JMX console:
 a. Launch the Web browser on the UCMDB Server machine, as follows:

 Note: Starting from version 10.30, access to the JMX console is restricted to localhost only. If you need to access the JMX console remotely, see "How to Enable Remote Access to the JMX Console".

 You may have to log in with a user name and password.
 b. Under UCMDB, click UCMDB:service=Security Services to open the Operations page.
 c. Locate and execute the changeKeystorePassword operation.
 This field must not be empty and must be at least six characters long. The password is changed in the database only.

3. Stop the UCMDB Server.

4. Run commands.

 From C:\hp\UCMDB\UCMBServer\bin\jre\bin, run the following commands:
 a. Change the store password:

 keytool -storepasswd -new <new_keystore_pass> -keystore C:\hp\UCMDB\UCMBServer\conf\security\server.keystore -storepass <current_keystore_pass>
 b. The following command displays the inner key of the keystore. The first parameter is the alias. Save this parameter for the next command:

 keytool -list -keystore C:\hp\UCMDB\UCMBServer\conf\security\server.keystore
 c. Change the key password (if the store is not empty):

 keytool -keypasswd -alias <alias> -keypass <currentPass> -new <newPass> -keystore C:\hp\UCMDB\UCMBServer\conf\security\server.keystore
 d. Enter the new password.

5. Start the UCMDB Server.

6. Repeat the procedure for the Server truststore.
Enable or Disable HTTP/HTTPS Ports

You can enable or disable the HTTP and HTTPS ports from within the user interface or from the JMX console.

To enable or disable the HTTP/HTTPS ports from within the user interface:

1. Log on to HPE Universal CMDB.
2. Select Administration > Infrastructure Settings.
3. Enter either http or https in the Filter (by Name) box to display the HTTP settings.
 - Enable HTTP(S) connections. True: the port is enabled. False: the port is disabled.
4. Restart the server to apply the change.

 Caution: The HTTPS port is open by default; closing this port prevents Server_Management.bat from functioning.

To enable or disable the HTTP/HTTPS ports from the JMX console:

1. Launch a Web browser and enter the following address: https://localhost.<domain_name>:8443/jmx-console.
2. Enter the JMX console authentication credentials. (The default user name is sysadmin.)
3. Locate UCMDB:service=Ports Management Services and click the link to open the Operations page.
4. To enable or disable the HTTP port, locate the HTTPSSetEnable operation and set the value.
 - True: the port is enabled.
 - False: the port is disabled.
5. To enable or disable the HTTPS port, locate the HTTPSSetEnable operation and set the value.
 - True: the port is enabled.
 - False: the port is disabled.
6. To enable or disable the HTTPS port with client authentication, locate the HTTPSClientAuthSetEnable operation and set the value.
 - True: the port is enabled.
 - False: the port is disabled.
Map the UCMDB Web Components to Ports

You can configure the mapping of each UCMDB component to the available ports from the JMX console.

To view the current component configurations:

1. Launch a Web browser and enter the following address: https://localhost:8443/jmx-console.
2. Enter the JMX console authentication credentials. The default credentials are:
 - Login name = sysadmin
 - Password = sysadmin
3. Locate UCMDB:service=Ports Management Services and click the link to open the Operations page.
4. Locate the ComponentsConfigurations method and click Invoke.
5. For each component, the valid ports and current mapped ports are displayed.

To map the components:

1. Locate UCMDB:service=Ports Management Services and click the link to open the Operations page.
2. Locate the mapComponentToConnectors method.
3. Enter a component name in the Value box. Select True or False for each of the ports corresponding to your selection. Click Invoke. The selected component is mapped to the selected ports. You can find the component names by invoking the serverComponentsNames method.
4. Repeat the process for each relevant component.

Note:

- Every component must be mapped to at least one port. If you do not map a component to any port, it is mapped by default to the HTTP port.
- If you map a component to both the HTTPS port and the HTTPS port with client authentication, only the client authentication option is mapped (the other option is redundant in this case).
- If you set isHTTPSWithClientAuth to True for the UCMDB UI component, you must also set it to True for the root component.

You can also change the value assigned to each of the ports.
To set values for the ports:

1. Locate **UCMDB:service=Ports Management Services** and click the link to open the Operations page.
2. To set a value for the HTTP port, locate the **HTTPSetPort** method and enter a value in the Value box. Click **Invoke**.
3. To set a value for the HTTPS port, locate the **HTTPSSetPort** method and enter a value in the Value box. Click **Invoke**.
4. To set a value for the HTTPS port with client authentication, locate the **HTTPSClientAuthSetPort** method and enter a value in the Value box. Click **Invoke**.

Configure Configuration Manager to Work with UCMDB Using SSL

You can configure Configuration Manager to work with UCMDB using Secure Sockets Layer (SSL). The SSL connector on port 8443 is enabled by default in UCMDB.

1. Go to `<UCMDB installation directory>\bin\jre\bin` and run the following command:

   ```
   keytool -export -alias hpcert -keystore <UCMDB_server_directory>\conf\security\server.keystore -storepass hppass -file <certificatefile>
   ```

2. Copy the certificate file to a temporary location on the local Configuration Manager machine.

3. Perform a new installation or reconfigure an existing installation of Configuration Manager. For instructions, see the relevant sections in the interactive *HPE Universal CMDB Deployment Guide*.

 In the UCMDB configuration screen, set the protocol to HTTPS, and choose the certificate file that you copied in step 2.

4. Copy `hpcert.cer` to the server machine in the `<Configuration_Manager_installation_directory>\java\windows\x86_64\bin` folder.

5. On the server machine, import the certificate into the trust store (cacerts) using the keytool utility with the following command:

   ```
   <Configuration_Manager_installation_directory>\java\bin\keytool.exe -import -alias hp -file hpcert.cer -keystore <Configuration_Manager_installation_directory>\java\windows\x86_64\lib\security\cacerts
   ```
6. Copy `hpcert.cer` to the server machine in the `<Configuration_Manager_installation_directory>\java\windows\x86_64\lib\security` folder.

7. Create a server keystore (JKS type) with a self-signed certificate and matching private key. From the `<Configuration_Manager_installation_directory>\java\windows\x86_64\bin` folder, run the following command:

   ```
   keytool -genkey -alias tomcat -keyalg RSA -keystore <Configuration_Manager_installation_directory>\java\windows\x86_64\lib\security\tomcat.keystore
   ```

 a. Enter a keystore password.

 b. For the question: What is your first and last name?, enter the Configuration Manager Web server name and enter the other parameters according to your organization.

 c. Enter a key password. The key password MUST be the same as the keystore password. A JKS keystore is created named `tomcat.keystore`, with a server certificate named `hpcert`.

8. Modify the `server.xml` file as follows:

 a. Open the `server.xml` file, located in `<Configuration_Manager_installation_directory>\servers\server-0\conf` folder. Locate the section beginning with:

      ```
      Connector port="8143"
      ```

 which appears as a comment. Activate the script by removing the comment character and add the following lines:

      ```
      keystoreFile="<Configuration_Manager_installation_directory>\java\windows\x86_64\lib\security\tomcat.keystore"
      keystorePass="password"
      truststoreFile="<Configuration_Manager_installation_directory>\java\windows\x86_64\lib\security\cacerts"
      truststorePass="changeit" />
      ```

 b. Comment out the following line:

      ```
      <Listener className="org.apache.catalina.core.AprLifecycleListener" SSLEngine="on" />
      ```

9. Restart the server.

 To configure Configuration Manager to work with other products (such as load balancers) using SSL, import the security certificate of the product to the Configuration Manager truststore (default jre truststore) by running the following command:

   ```
   <CM_JAVA_HOME>\bin\keytool -import -trustcacerts -alias <alias> -keystore <CM_JAVA_HOME>\lib\security\cacerts -storepass changeit -file <certificatefile>
   ```
Enable the UCMDB KPI Adapter to be used with SSL

You can configure the UCMDB KPI adapter information to be sent using Secure Sockets Layer (SSL).

1. Export the Configuration Manager certificate:

   ```text
   <CM_JAVA_HOME>/bin/keytool -export -alias tomcat -keystore
   <CM_JAVA_HOME>/lib/security/tomcat.keystore -storepass
   <keystore pass> -file <certificate file name>
   ```

2. Import the certificate that you exported from Configuration Manager into the UCMDB truststore as follows:

   ```text
   <UCMDB server dir>/bin/jre/bin keytool -import -trustcacerts
   -alias tomcat -keystore <UCMDB server dir>/bin/jre/lib
   security/cacerts -storepass changeit -file <certificatefile>
   ```

3. Import the certificate that you exported from Configuration Manager into the Probe’s truststore as follows:
 a. Open the command prompt and run the command:

      ```text
      <DataFlowProbe dir>/bin/jre/bin/keytool.exe -import -v -keystore
      <DataFlowProbe dir>/conf/security/HPProbeTrustStore.jks -file
      <certificatefile> -alias tomcat
      ```
 b. Enter the keystore password: logomania
 c. When asked Trust this certificate?, press y and then Enter.

 The following message is displayed:

      ```text
      Certificate was added to keystore.
      ```

 For additional details about hardening the Data Flow Probe, see "Data Flow Probe Hardening" on page 87.

4. Restart UCMDB, the Data Flow Probe, and Configuration Manager.

Configure SSL Support for the UCMDB Browser

Note: The instructions provided here are relevant to UCMDB Browser version 1.95. If you are
using a later version of the UCMDB Browser that has been upgraded separately from the rest of the UCMDB product suite, see the section on configuring SSL support in the *HPE Universal CMDB Browser Installation and Configuration Guide* for that version.

To install and configure SSL support on Tomcat:

1. Create a keystore file to store the server’s private key and self-signed certificate by executing one of the following commands:
 - For Windows: `%JAVA_HOME%\bin\keytool -genkey -alias tomcat -keyalg RSA`
 - For Unix: `$JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA`

 For both commands, use the password value `changeit` (for all other fields in the console dialog that opens, you can use any value).

2. Remove comments from the entry `SSL HTTP/1.1 Connector` in `$CATALINA_BASE/conf/server.xml`, where `$CATALINA_BASE` is the directory in which you installed Tomcat.

 Note: For a full description on how to configure `server.xml` to use SSL, see the Apache Tomcat official site: http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html

3. Restart the Tomcat server.

To use the HTTPS protocol for connection to the UCMDB server:

1. In `ucmdb_browser_config.xml`, assign the value `https` to the tag `<protocol>` and assign the UCMDB server HTTPS port value (8443 by default) to the tag `<port>`.

2. Download the UCMDB Server public certificate to the UCMDB Browser machine (if you use SSL on the UCMDB-Server, the UCMDB administrator can provide you with this certificate), and import it into the `cacerts` trust store on the JRE that is going to connect to the server by executing the following command:

   ```
   "%JAVA_HOME%\bin\keytool" -import -alias ucmdb -trustcacerts -file <UCMDB-Server-certificate-file> -keystore "%JAVA_HOME%\jre\lib\security\cacerts"
   ```

 where `<UCMDB-Server-certificate-file>` is the full path to the UCMDB Server public certificate file.

3. Restart the Tomcat server.
Chapter 3: Using a Reverse Proxy

This section describes the security ramifications of reverse proxies and contains instructions for using a reverse proxy with HP Universal CMDB and Configuration Manager. Security aspects of a reverse proxy are discussed but not other aspects such as caching and load balancing.

This chapter includes:

- Reverse Proxy Overview .. 44
- Security Aspects of Using a Reverse Proxy Server 45
- Configure a Reverse Proxy ... 46
- Distributed Denial of Service Attack Protection 49
- Connect the Data Flow Probe by Reverse Proxy or Load Balancer Using Mutual Authentication 50
- Connect the Data Flow Probe by Reverse Proxy and Self-signed Certificate 52
- Configure CAC Support on UCMDB by Reverse Proxy 58

Reverse Proxy Overview

A reverse proxy is an intermediate server that is positioned between the client machine and the Web servers. To the client machine, the reverse proxy appears to be a standard Web server that serves the client machine’s HTTP protocol requests.

The client machine sends ordinary requests for Web content, using the name of the reverse proxy instead of the name of a Web server. The reverse proxy sends the request to one of the Web servers. Although the response is sent back to the client machine by the reverse proxy, it appears to the client machine as if it is being sent by the Web server.

It is possible to have multiple reverse proxies, with different URLs, representing the same UCMDB/CM instance. Alternatively, a single reverse proxy server can be used to access several UCMDB/CM servers, by setting different root contexts for each UCMDB/CM server.

HP Universal CMDB and Configuration Manager support a reverse proxy in a DMZ architecture. The reverse proxy is an HTTP mediator between the Data Flow Probe and the Web client and the HP Universal CMDB/CM server.
Note:

- Different types of reverse proxies require different configuration syntaxes. For an example of an Apache 2.0.x reverse proxy configuration, see "Example: Apache 2.0.x Configuration" on page 47.

- It is only necessary to configure the front-end URL setting when creating a direct link to a report using the Scheduler.

Security Aspects of Using a Reverse Proxy Server

A reverse proxy server functions as a bastion host. The proxy is configured to be the only machine addressed directly by external clients, and thus obscures the rest of the internal network. Using a reverse proxy enables the application server to be placed on a separate machine in the internal network.

This section discusses the use of a DMZ and reverse proxy in a back-to-back topology environment.

The following are the main security advantages of using a reverse proxy in such an environment:

- No DMZ protocol translation occurs. The incoming protocol and outgoing protocol are identical (only a header change occurs).
- Only HTTP access to the reverse proxy is allowed, which means that stateful packet inspection firewalls can better protect the communication.
A static, restricted set of redirect requests can be defined on the reverse proxy.

Most of the Web server security features are available on the reverse proxy (authentication methods, encryption, and so on).

The reverse proxy screens the IP addresses of the real servers as well as the architecture of the internal network.

The only accessible client of the Web server is the reverse proxy.

This configuration supports NAT firewalls (as opposed to other solutions).

The reverse proxy requires a minimal number of open ports in the firewall.

The reverse proxy provides good performance compared to other bastion solutions.

Configure a Reverse Proxy

This section describes how to configure a reverse proxy. As of UCMDB version 10.01, no configuration is necessary in UCMDB. On the reverse proxy side, edit the configuration file according to the reverse proxy’s documentation. For an example, see "Example: Apache 2.0.x Configuration " on the next page.

For scheduled jobs created prior to UCMDB version 10.01, you also need to set the configuration in UCMDB as follows:

Configure a Reverse Proxy Using Infrastructure Settings

The following procedure explains how to access Infrastructure Settings to configure a reverse proxy. This configuration is only necessary when creating a direct link to a report using the Scheduler.

To configure a reverse proxy:

1. Select Administration > Infrastructure Settings > General Settings category.
2. Change the Frontend URL setting. Enter the address, for example, https://my_proxy_server:443/.

 Note: After making this change, you cannot access the HP Universal CMDB server directly through a client. To change the reverse proxy configuration, use the JMX console on the server machine. For details, see "Configure a Reverse Proxy Using the JMX Console" below.
Configure a Reverse Proxy Using the JMX Console

You can make changes to the reverse proxy configuration by using the JMX console on the HP Universal CMDB server machine. This configuration is only necessary when creating a direct link to a report using the Scheduler.

To change a reverse proxy configuration:

1. On the HP Universal CMDB server machine, launch the Web browser and enter the following address:

 https://localhost.<domain_name>:8443/jmx-console

 You may have to log in with the user name and password.

2. Click the UCMDB-UI > UCMDB-UI:name=UI Server frontend settings link.

 In the setUseFrontendURLBySettings field, enter the server proxy URL, for example, https://my_proxy_server:443/.

3. Click Invoke.

4. To see the value of this setting, use the showFrontendURLInSettings method.

Example: Apache 2.0.x Configuration

This section describes a sample configuration file that supports the use of an Apache 2.0.x reverse proxy in a case where both Data Flow Probes and application users connect to HP Universal CMDB.

The following diagram illustrates the configuration process for a reverse proxy for Configuration Manager and UCMDB.
Note:

- In this example, the HP Universal CMDB machine’s DNS name and port is UCMDB_server.
- In this example, the HP Configuration Manager’s DNS name and port is UCMDB_CM_server.
- Only users with a knowledge of Apache administration should make this change.

1. Open the `<Apache machine root directory>\Webserver\conf\httpd.conf` file.
2. Enable the following modules:
 - `LoadModule proxy_module modules/mod_proxy.so`
 - `LoadModule proxy_http_module modules/mod_proxy_http.so`
3. Add the following lines to the `httpd.conf` file:

```plaintext
ProxyRequests off
<Proxy *
    Order deny,allow
    Deny from all
    Allow from all
</Proxy>

ProxyPass /mam http://UCMDB_server/mam
ProxyPassReverse /mam http://UCMDB_server/mam
ProxyPass /mam_images http://UCMDB_server/mam_images
ProxyPassReverse /mam_images http://UCMDB_server/mam_images
ProxyPass /mam-collectors http://UCMDB_server/mam-collectors
ProxyPassReverse /mam-collectors http://UCMDB_server/mam-collectors
ProxyPass /ucmdb http://UCMDB_server/ucmdb
ProxyPassReverse /ucmdb http://UCMDB_server/ucmdb
ProxyPass /site http://UCMDB_server/site
ProxyPassReverse /site http://UCMDB_server/site
ProxyPass /ucmdb-ui http://UCMDB_server/ucmdb-ui
ProxyPassReverse /ucmdb-ui http://UCMDB_server/ucmdb-ui
ProxyPass /status http://UCMDB_server/status
ProxyPassReverse /status http://UCMDB_server/status
ProxyPass /jmx-console http://UCMDB_server/jmx-console
ProxyPassReverse /jmx-console http://UCMDB_server/jmx-console
ProxyPass /axis2 http://UCMDB_server/axis2
ProxyPassReverse /axis2 http://UCMDB_server/axis2
ProxyPass /icons http://UCMDB_server/icons
ProxyPassReverse /icons http://UCMDB_server/icons
ProxyPass /ucmdb-api http://UCMDB_server/ucmdb-api
ProxyPassReverse /ucmdb-api http://UCMDB_server/ucmdb-api
ProxyPass /ucmdb-docs http://UCMDB_server/ucmdb-docs
ProxyPassReverse /ucmdb-docs http://UCMDB_server/ucmdb-docs
ProxyPass /ucmdb-api/8.0 http://UCMDB_server/ucmdb-api/8.0
```
4. Save your changes.

Distributed Denial of Service Attack Protection

A few DDoS attacks such as Slowloris/Slow read may be mitigated by implementing third-party protections such as the following:

- Apache HTTP Server as Revers Proxy. For this use mod_reqtimeout and mod_qos
- F5 Big IP LTM iRule: applicable if using F5 hardware load balancer in front of UCMDB server

Note: Due to the nature of these types of attacks, it is not possible to implement application-specific fixes or enhancements to prevent these types of attacks.

For more information, refer to the following:

- http://ha.ckers.org/slowloris/
- https://httpd.apache.org/docs/trunk/mod/mod_reqtimeout.html
- https://bz.apache.org/bugzilla/show_bug.cgi?id=54263
- https://f5.com/resources/white-papers/mitigating-ddos-attacks-with-f5-technology
Connect the Data Flow Probe by Reverse Proxy or Load Balancer Using Mutual Authentication

Perform the following procedure to connect the Data Flow Probe through a reverse proxy or load balancer using mutual authentication. This procedure applies to the following configuration:

- Mutual SSL authentication between the probe and a reverse proxy or load balancer based on a client certificate provided by the probe and required by the reverse proxy or load balancer.
- A regular SSL connection between the reverse proxy or load balancer and the UCMDB server.

Note: The following instructions use the `cKeyStoreFile` keystore as the Probe keystore. This is a predefined client keystore that is part of the Data Flow Probe installation and contains a self-signed certificates. For details, see "Server and Data Flow Probe Default Keystore and Truststore" on page 109.

It is recommended to create a new, unique keystore containing a newly generated private key. For details, see "Create a Keystore for the Data Flow Probe" on page 111.

Obtain a Certificate from a Certification Authority

Obtain the CA root certificate and import it into the following locations:

- the Data Flow Probe truststore
- the Data Flow Probe JVM cacerts
- the UCMDB server truststore
- the reverse proxy truststore

1. Import the CA root certificate into the Data Flow Probe truststore.
 a. Place the CA root certificate in the following directory: `<Data Flow Probe installation directory>\conf\security\<certificate file name>`.
 b. Import the CA root certificate into the Data Flow truststore by running the following script:

   ```
   <Data Flow Probe installation directory>\bin\jre\bin\keytool.exe -import -trustcacerts -alias <YourAlias> -file C:\hp\UCMDB\DataFlowProbe\conf\security\<certificate file name> -keystore <Data Flow Probe installation directory>\conf\security\HPProbeTrustStore.jks
   ```

 The default password is: **logomania**.
2. Import the CA root certificate into the Data Flow Probe JVM cacerts by running the following script:

```
<Data Flow Probe installation directory>\bin\jre\bin\keytool.exe -import -trustcacerts -alias <YourAlias> -file <Data Flow Probe installation directory>\conf\security\<certificate file name> -keystore <Data Flow Probe installation directory>\bin\jre\lib\security\cacerts
```

The default password is: **changeit**.

3. Import the CA root certificate into the UCMDB truststore.

a. Place the CA root certificate in the following directory: `<UCMDB installation directory>\conf\security\<certificate file name>`.

 b. Import the CA root certificate into the UCMDB truststore by running the following script:

```
<UCMDB installation directory>\bin\jre\bin\keytool.exe -import -trustcacerts -alias <YourAlias> -file <UCMDB installation directory>\conf\security\<certificate file name> -keystore <UCMDB installation directory>\conf\security\sever.truststore
```

 The default password is: **hppass**.

4. Import the CA root certificate into the reverse proxy truststore. This is step is vendor dependent.

Convert the Certificate to a Java Keystore

Obtain the client certificate (and private key) for the Data Flow Probe from your Certificate Authority (CA) in the PFX/PKCS12 format and convert it to a Java keystore by running the following script:

```
<Data Flow Probe installation directory>\bin\jre\bin\keytool.exe -importkeystore -srckeystore <PFX keystore full path> -destkeystore <new destination keystore full path> -srcstoretype PKCS12
```

You will be prompted for the source and destination keystore passwords.

For the source keystore password, use the same password that was used when exporting the PFX keystore.

The default destination keystore password for the Data Flow Probe keystore is: **logomania**.

Note: If you entered a different destination keystore password from the default Data Flow Probe key store password (logomania), you will need to supply the new password in encrypted format in the `<Data Flow Probe installation directory>\conf\ssl.properties` file (javax.net.ssl.keyStorePassword). For details, see "Encrypt the Probe Keystore and Truststore Passwords" on page 109.
Place new keystore in the following directory: `<Data Flow Probe installation directory>\conf\security`.

Caution: Do not overwrite the `hpprobeKeyStore.jks` file.

Change the SSL Properties File to Use the Newly Created Keystore

Set the keystore containing the client certificate in the `<Data Flow Probe installation directory>\conf\ssl.properties` file to `javax.net.ssl.keyStore`.

If the password to your keystore is not the default Data Flow Probe keystore password (logomania), then update the `javax.net.ssl.keyStorePassword` after encrypting it. For detail on encrypting the password, see "Encrypt the Probe Keystore and Truststore Passwords" on page 109.

Review the Data Flow Probe Configuration

Edit the `<Data Flow Probe installation directory>\conf\DataFlowProbe.properties` file as follows:

```
appilog.agent.probe.protocol = HTTPS
serverName = <reverse proxy server address>
serverPortHttps = <the HTTPS port that the reverse proxy listens to in order to redirect requests to the UCMDB>
```

Configure UCMDB to Work Using SSL

For details, see "Enabling Secure Sockets Layer (SSL) Communication" on page 20.

If the UCMDB server certificate is created by the same CA that created the rest of the certificates in this procedure, the reverse proxy or load balancer trusts the UCMDB certificate.

Connect the Data Flow Probe by Reverse Proxy and Self-signed Certificate

This chapter introduces how to connect the Data Flow Probe and UCMDB Server by using the self-signed certificates and Apache as the proxy server.

Step 1. Prepare the certificates

Step 2. Import the certificates to UCMDB and Probe's truststore

Step 3. Configure the Apache proxy server
Step 4. Configure the UCMDB Server and the Data Flow Probe

Note: The commands in this chapter assume the following installation paths:

- UCMDB Server: `C:\hp\UCMDB\UCMDBServer\`
- Data Flow Probe: `C:\hp\UCMDB\DataFlowProbe\`
- Apache: `C:\Apache24\`

You may need to update the commands according to your actual environment.

Step 1. Prepare the certificates

1. Create the `ssl` folder under `C:\Apache24\conf`.

2. Generate the server certificates. To do this, execute the following commands under the `C:\Apache24\bin` folder and follow the prompted instructions to provide necessary information:

   ```
   openssl genrsa -out ../conf/ssl/server-key.pem 2048
   openssl req -new -out ../conf/ssl/server-req.csr -key ../conf/ssl/server-key.pem
   openssl x509 -req -in ../conf/ssl/server-req.csr -out ../conf/ssl/server-cert.pem -signkey ../conf/ssl/server-key.pem -days 1095
   openssl pkcs12 -export -clcerts -in ../conf/ssl/server-cert.pem -inkey ../conf/ssl/server-key.pem -out ../conf/ssl/server.p12
   ```

 Note: In the last command, use the default password: changeit.

3. Generate the client certificates and then export the public cert and private key into one file. To do this, execute the following commands under the `C:\Apache24\bin` folder and follow the prompted instructions to provide necessary information:

   ```
   openssl genrsa -out ../conf/ssl/client-key.pem 2048
   openssl req -new -out ../conf/ssl/client-req.csr -key ../conf/ssl/client-key.pem
   openssl x509 -req -in ../conf/ssl/client-req.csr -out ../conf/ssl/client-cert.pem -signkey ../conf/ssl/client-key.pem -days 1095
   openssl pkcs12 -export -clcerts -in ../conf/ssl/client-cert.pem -inkey ../conf/ssl/client-key.pem -out ../conf/ssl/client.p12
   ```

 Note: In the last command, use the default password: changeit.

4. Export the UCMDB server public certificate files as PEM format. To do this, follow these steps:

 a. Execute the following commands on the UCMDB Server, and then enter the keystore password (the default keystore password is hppass).
b. Copy this **server.cert** certificate to the Apache server under the C:\Apache24\conf\ssl folder, and then convert it to the PEM format by executing the following commands:

```
cd C:\Apache24\bin
openssl x509 -out ../conf/ssl/server-cert.pem -outform pem -text -in ../conf/ssl/server.cert -inform der
```

5. Export the Data Flow Probe public certificate files as PEM format. To do this, follow these steps:

a. Execute the following commands on the Data Flow Probe, and then enter the keystore password (the default keystore password is **logomania**).

```
cd C:\hp\UCMDB\DataFlowProbe\bin\jre\bin\keytool.exe -export -alias hpprobe -keystore C:\hp\UCMDB\DataFlowProbe\conf\security\HPProbeKeyStore.jks -file C:\hp\UCMDB\DataFlowProbe\conf\security\hpprobe.cert
```

b. Copy this **hpprobe.cert** certificate to the Apache server under the C:\Apache24\conf\ssl folder, and then convert it to the PEM format by executing the following commands:

```
cd C:\Apache24\bin
openssl x509 -out ../conf/ssl/hprobe-cert.pem -outform pem -text -in ../conf/ssl/hprobe.cert -inform der
```

Step 2. Import the certificates to UCMDB and Probe's truststore

1. Import the certificate to the Data Flow Probe's truststore. To do this, follow these steps:

 a. Copy the **server-cert.pem** certificate to the C:\hp\UCMDB\DataFlowProbe\conf\security\ folder of the Data Flow Probe.

 b. Execute the following command on the Data Flow Probe:

```
cd C:\hp\UCMDB\DataFlowProbe\bin\jre\bin\keytool.exe -import -v -keystore
C:\HP\UCMDB\DataFlowProbe\conf\security\HPProbeTrustStore.jks -file C:\hp\UCMDB\DataFlowProbe\conf\security\server-cert.pem -alias proxycert
```

 When you are prompted, enter the keystore password (the default keystore password is **logomania**) and type **yes** to trust the certificate.

2. Import the certificate to the UCMDB Server's truststore. To do this, follow these steps:
a. Copy the `client-cert.pem` certificate to the `C:\hp\UCMDB\UCMDBServer\conf\security\` folder of the UCMDB Server.

b. Execute the following command on the UCMDB Server:

   ```
cd C:\hp\UCMDB\UCMDBServer\bin\jre\bin\keytool.exe -import -v -keystore C:\hp\UCMDB\UCMDBServer\conf\security\server.truststore -file C:\hp\UCMDB\UCMDBServer\conf\security\client-cert.pem -alias proxycert
   ```

 When you are prompted, enter the keystore password (the default keystore password is `hppass`) and type `yes` to trust the certificate.

Step 3. Configure the Apache proxy server

1. Modify the `C:\Apache24\conf\httpd.conf` file and uncomment the lines for the following modules (by removing the `#` character at the beginning of each line): `mod_ssl.so`, `mod_access_compat.so`, `mod_proxy.so`, `mod_xml2enc.so`.

2. In the `C:\Apache24\conf\httpd.conf` file, uncomment the line for `httpd-ssl.conf` in the `<IfModule ssl_module>` section.

3. Locate the following configurations in the `C:\Apache24\conf\extra\httpd-ssl.conf` file and update the configurations as follows:

   ```
   SSLCertificateFile "${SRVROOT}/conf/ssl/server-cert.pem"
   SSLCertificateKeyFile "${SRVROOT}/conf/ssl/server-key.pem"
   SSLCACertificateFile "${SRVROOT}/conf/ssl/hprobe-cert.pem"
   SSLVerifyClient require
   SSLVerifyDepth 10
   ```

4. Add the following configurations in the `C:\Apache24\conf\extra\httpd-ssl.conf` file:

   ```
   # SSL CONFIGURATION - CLIENT SIDE
   # Enable SSL Client on this virtualhost (the traffic to the backends can be encrypted)
   SSLProxyEngine on
   # Apache client CA certificate (certificate of who released your client certificate)
   #SSLProxyMachineCertificateChainFile "${SRVROOT}/conf/ssl/ca-certificate.pem"
   # Apache client private key + client certificate (concatenated in a single file)
   SSLProxyMachineCertificateFile "${SRVROOT}/conf/ssl/client.p12"
   # Backends' CA certificates (list of certificates of who released your backends' certificates)
   SSLProxyCACertificateFile "${SRVROOT}/conf/ssl/ucmdb-cert.pem"
   ```
It’s mandatory for apache to authenticate the backends’ certificate
SSLProxyVerify require
#SSLProxyVerify none
SSLProxyVerifyDepth 10
by default the CN name for ucmd-cert.pem is different from the IP/FQDN, so we need to turn off them
SSLProxyCheckPeerCN off
SSLProxyCheckPeerName off

END OF SSL CONFIGURATION - CLIENT SIDE

5. Add the following in the <VirtualHost> section in the C:\Apache24\conf\extra\httpd-ssl.conf file:

```xml
<Proxy>*</Proxy>
Order deny,allow
Deny from all
Allow from all
</Proxy>
ProxyPass / https://<UCMDB_Server_IP_Address>:8444/
ProxyPassReverse / https://<UCMDB_Server_IP_Address>:8444/
```

Step 4. Configure the UCMDB Server and Data Flow Probe

1. Change the probe configuration file DataFlowProbe.properties as follows. The probe now should connect to the virtual host configured in Apache.

```properties
# Can be either HTTP or HTTPS
appilog.agent.probe.protocol = HTTPS

# Name of the Server machine to which this probe reports
# This should be configured with proxy server’s IP/FQDN
serverName = <Apache_IP_Address>

# Ports used for HTTP/s traffic
# change the port to proxy server listening port, which I configured in httpd-ssl.conf.
serverPort = 8080
serverPortHttps = 443
```

2. Change the UCMDB configuration via JMX. To do this, follow these steps:

 a. Access the UCMDB JMX console: In your Web browser, enter the following URL: https://localhost:8443/jmx-console. You may have to log in with a user name and password.
b. Select the service: **Ports Management Services**.

c. Invoke the **PortsDetails** method, and note the port number for HTTPS with client authentication. (Default: 8444) Ensure that the value in the **Is Enabled** column is **True**.

d. Return to **Ports Management Services**.

e. To map the Data Flow Probe connector to mutual authentication mode, invoke the **mapComponentToConnectors** method with the following parameters:

 - **componentName**: mam-collectors
 - **isHTTPSWithClientAuth**: true
 - **All other flags**: false

 The following message is displayed:

 Operation succeeded. Component mam-collectors is now mapped to: HTTPS_CLIENT_AUTH ports.

 Note: If you want to use multiple authentication methods, make sure you check the ports used by each of them and set them to **true** (when mapping both cm and mam-collectors).

f. Return to **Ports Management Services**.

g. To map the Confidential Manager connector to mutual authentication mode, invoke the **mapComponentToConnectors** method with the following parameters:

 - **componentName**: cm
 - **isHTTPSWithClientAuth**: true
 - **All other flags**: false

 The following message is displayed:

 Operation succeeded. Component cm is now mapped to: HTTPS_CLIENT_AUTH ports.

 Note: If you want to use multiple authentication methods, make sure you check the ports used by each of them and set them to **true** (when mapping both cm and mam-collectors).

3. (Optional) Disable other ports. For example, 8080.

4. Restart the UCMDB Server, Data Flow Probe, and Apache proxy server.

 Tip: You can enable the debug log by editing the **C:\Apache24\conf\httpd.conf** file as follows:
Configure CAC Support on UCMDB by Reverse Proxy

This section describes how to configure Common Access Card (CAC) support on UCMDB using a reverse proxy.

1. Open the JMX console by launching the Web browser and entering the Server address, as follows: https://localhost:8443/jmx-console.
 You may have to log in with a user name and password.

2. Under UCMDB, click UCMDB:service=Ports Management Services to open the Operations page.
 - (optional) Click ComponentsConfigurations. Do the following:
 - Set HTTPSetPort to 8080 and click Invoke.
 - Click Back to MBean.
 - Click mapComponentToConnectors. Do the following:
 - In the mapComponentToConnectors service, set componentName to ucmdb-ui.
 - Set only isHTTP to true, and click Invoke.
 - Click Back to MBean.
 - In the mapComponentToConnectors service, set componentName to root.
 - Set only isHTTP to true, and click Invoke.

3. Under UCMDB, click UCMDB:service=Security Services to open the Operations page.
- Set `loginWithCAC` to `true`, and click **Invoke**.
- Click **Back to MBean**.
- Set `withReverseProxy` to `true`, and click **Invoke**.

 This setting tells the UCMDB server to extract from the UCMDB_SSL_CLIENT_CERT header the user name to be used in UCMDB and the certificate to be used for authentication.

- Click **Back to MBean**.
- (optional) Set `onlyCACCCerts` to `true`, and click **Invoke**.

 Set this operation to `true` to accept only certificates that come from a physical CAC device.

- (optional) Click **usernameField** to specify the field from the certificate that will be used by UCMDB to extract a username, and click **Invoke**.

 Note: If you do not specify a field, the default of PRINCIPAL_NAME_FROM_SAN_FIELD is used.

4. Restart the UCMDB Server.

(***Optional***) **Configure LocationMatch in Apache Reverse Proxy httpd-ssl.conf for CAC Setup**

When using Apache as a reverse proxy while accessing the UCMDB server with CAC enabled, sometimes you might encounter cascading pin request popups.

To skip the **appler.jsp** pin prompt, you may add the **LocationMatch** setting as follows to the **httpd-ssl.conf** file:

```xml
<LocationMatch "^/ucmdb-ui/login_page.jsp">
    SSLVerifyClient require
    SSLVerifyDepth 10
</LocationMatch>
```

Example: Apache 2.4.4 Configuration

This section describes a sample configuration file for Apache 2.4.4.

Note: This example presumes that the Apache server was installed in `C:\Apache24`; if it is installed in a different folder, you must change the example in all cases to specify the correct location.

The port for mutual authentication used in this example is 443. In the `C:\Apache24\conf` folder, copy the following:
- the certificate used by the apache server *(server.crt)*
- the private key of the Apache server *(server.key)*
- the trusted CAs of the Apache server *(ssl.crt)*
- the certification revocation list *(ssl.crt)*.

Note: These four files must all be in PEM format.

Replace the content of *c:\Apache24\conf\httpd.conf* with the following (change the [APACHE_MACHINE_FQD] accordingly):

```plaintext
ServerRoot "c:/Apache24"
Listen 80
LoadModule access_compat_module modules/mod_access_compat.so
LoadModule actions_module modules/mod_actions.so
LoadModule alias_module modules/mod_alias.so
LoadModule allowmethods_module modules/mod_allowmethods.so
LoadModule asis_module modules/mod_asis.so
LoadModule auth_basic_module modules/mod_auth_basic.so
LoadModule authn_core_module modules/mod_authn_core.so
LoadModule authn_file_module modules/mod_authn_file.so
LoadModule authz_core_module modules/mod_authz_core.so
LoadModule authz_groupfile_module modules/mod_authz_groupfile.so
LoadModule authz_host_module modules/mod_authz_host.so
LoadModule authz_user_module modules/mod_authz_user.so
LoadModule autoindex_module modules/mod_autoindex.so
LoadModule cgi_module modules/mod_cgi.so
LoadModule dir_module modules/mod_dir.so
LoadModule env_module modules/mod_env.so
LoadModule headers_module modules/mod_headers.so
LoadModule include_module modules/mod_include.so
LoadModule isapi_module modules/mod_isapi.so
LoadModule log_config_module modules/mod_log_config.so
LoadModule mime_module modules/mod_mime.so
LoadModule negotiation_module modules/mod_negotiation.so
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_html_module modules/mod_proxy_html.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule setenvif_module modules/mod_setenvif.so
LoadModule socache_shmcb_module modules/mod_socache_shmcb.so
LoadModule ssl_module modules/mod_ssl.so
LoadModule xml2enc_module modules/mod_xml2enc.so
<IfModule unixd_module>
User daemon
Group daemon
</IfModule>
```
Include conf/extra/httpd-ssl.conf
<IfModule ssl_module>
SSLRandomSeed startup builtin
SSLRandomSeed connect builtin
</IfModule>

Also, replace the content of c:/Apache24/conf/extra/httpd-ssl.conf with the following (change the [APACHE_MACHINE_FQD], [UCMDB_SERVER_NAME], and [UCMDB_CM_SERVER_NAME] accordingly):

Listen 443
SSLCipherSuite HIGH:MEDIUM:!aNULL:!MD5
SSLPassPhraseDialog builtin
SSLSessionCache "shmcb:c:/Apache24/logs/ssl_scache(512000)"
SSLSessionCacheTimeout 300
<VirtualHost _default_:443>
DocumentRoot "c:/Apache24/htdocs"
ServerName [APACHE_MACHINE_FQD]:443
ServerAdmin admin@example.com
ErrorLog "c:/Apache24/logs/error.log"
TransferLog "c:/Apache24/logs/access.log"
SSLEngine on
SSLCertificateFile "c:/Apache24/conf/server.crt"
SSLCertificateKeyFile "c:/Apache24/conf/server.key"
SSLCACertificateFile "c:/Apache24/conf/ssl.crt"
SSLCARevocationFile "c:/Apache24/conf/ssl.crl"
SSLCARevocationCheck leaf
SSLVerifyClient require
SSLVerifyDepth 10
SSLOptions +ExportCertData
<FilesMatch "\.\.(cgi|shtml|phtml|php)$">
 SSLOptions +StdEnvVars
</FilesMatch>
<Directory "c:/Apache24/cgi-bin">
 SSLOptions +StdEnvVars
</Directory>
BrowserMatch "MSIE [2-5]"
 nokeepalive ssl-unclean-shutdown
 downgrade-1.0 force-response-1.0
CustomLog "c:/Apache24/logs/ssl_request.log" \
 "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x "%r" %b"
RequestHeader set UCMDB_SSL_CLIENT_CERT %{SSL_CLIENT_CERT}e
ProxyRequests off
<Proxy>*</Proxy>
 Order deny,allow
 Deny from all
 Allow from all
</Proxy>
Now you can access the UCMDB server through reverse proxy by going to https://[APACHE_MACHINE_FQDN].

Note: You must have a valid certificate imported in Internet Explorer. A valid certificate is one that was signed by a CA of the Apache trusted CAs (it must be present in the ssl.crt file).
Chapter 4: Data Flow Credentials Management

This chapter includes:

- Data Flow Credentials Management Overview ... 65
- Basic Security Assumptions ... 66
- Data Flow Probe Running in Separate Mode .. 66
- Keeping the Credentials Cache Updated ... 67
- Synchronizing All Probes with Configuration Changes 67
- Secured Storage on the Probe .. 68
- Viewing Credentials Information ... 68
- Updating Credentials .. 69
- Configure Confidential Manager Client Authentication and Encryption Settings ... 70
 - Configure LW-SSO Settings .. 70
 - Configure Confidential Manager Communication Encryption 70
- Configure Confidential Manager Client Authentication and Encryption Settings Manually on the Probe ... 72
 - Disable Automatic Synchronization of the Confidential Manager Client Authentication and Encryption Settings Between the Server and Probes .. 72
 - Configure Confidential Manager Client Authentication and Encryption Settings on the Probe ... 73
 - Configure Confidential Manager Communication Encryption on the Probe .. 73
- Configure the Confidential Manager Client Cache 74
 - Configure the Confidential Manager Client’s Cache Mode on the Probe .. 75
 - Configure the Confidential Manager Client’s Cache Encryption Settings on the Probe .. 75
- Export and Import Credential and Range Information in Encrypted Format ... 77
- Remove Credential and Range Information by Domain Name 78
- Change Confidential Manager Client Log File Message Level 78
 - Confidential Manager Client Log File .. 79
 - LW-SSO Log File ... 79
- Generate or Update the Encryption Key ... 80
Data Flow Credentials Management Overview

To perform discovery or run integration, you must set up the credentials to access the remote system. Credentials are configured in the Data Flow Probe Setup window and saved in the UCMDB Server. For details, see the section describing the Data Flow Probe setup in the *HPE Universal CMDB Data Flow Management Guide*.

Credentials storage is managed by the Confidential Manager component. For details, see "Confidential Manager" on page 135.

The Data Flow Probe can access the credentials using the Confidential Manager client. The Confidential Manager client resides on the Data Flow Probe and communicates with the Confidential Manager server, which resides on the UCMDB Server. Communication between the Confidential Manager client and the Confidential Manager server is encrypted, and authentication is required by the Confidential Manager client when it connects to the Confidential Manager server.

The Confidential Manager client's authentication on the Confidential Manager server is based on a LW-SSO component. Before connecting to the Confidential Manager server, the Confidential Manager client first sends an LW-SSO cookie. The Confidential Manager server verifies the cookie and upon successful verification, communication with the Confidential Manager client begins. For details about LW-SSO, see "Configure LW-SSO Settings" on page 70.

The communication between the Confidential Manager client and the Confidential Manager server is encrypted. For details about updating the encryption configuration, see "Configure Confidential Manager Communication Encryption" on page 70.

Caution: The Confidential Manager authentication uses the universal time defined on the computer (UTC). In order for the authentication to succeed, ensure that the universal time on the Data Flow probe and the UCMDB Server are the same. The server and probe may be located in different time zones, as UTC is independent of time zone or daylight savings time.
The Confidential Manager client maintains a local cache of the credentials. The Confidential Manager client is configured to download all credentials from the Confidential Manager server and store them in a cache. The credentials changes are automatically synchronized from Confidential Manager server on a continuous basis. The cache can be a file-system or in-memory cache, depending on the preconfigured settings. In addition, the cache is encrypted and cannot be accessed externally. For details about updating the cache settings, see "Configure the Confidential Manager Client’s Cache Mode on the Probe" on page 75. For details about updating the cache encryption, see "Configure the Confidential Manager Client’s Cache Encryption Settings on the Probe" on page 75.

For details on troubleshooting, see "Change Confidential Manager Client Log File Message Level" on page 78.

You can copy credentials information from one UCMDB server to another. For details, see "Export and Import Credential and Range Information in Encrypted Format" on page 77.

Note: The DomainScopeDocument (DSD) that was used for credentials storage on the Probe (in UCMDB version 9.01 or earlier) no longer contains any credentials-sensitive information. The file now contains a list of Probes and network range information. It also contains a list of credential entries for each domain, where each entry includes the credential ID and a network range (defined for this credential entry) only.

This section includes the following topics:

- "Basic Security Assumptions" below
- "Data Flow Probe Running in Separate Mode" below
- "Keeping the Credentials Cache Updated" on the next page
- "Synchronizing All Probes with Configuration Changes" on the next page
- "Secured Storage on the Probe" on page 68

Basic Security Assumptions

Note the following security assumption:

You have secured the UCMDB Server and Probe JMX console to enable access to UCMDB system administrators only, preferably through localhost access only.

Data Flow Probe Running in Separate Mode

When the Probe Gateway and Manager run as separate processes, the Confidential Manager client component becomes part of the Manager process. Credentials information is cached and used by the
Probe Manager only. To access the Confidential Manager server on the UCMDB system, the Confidential Manager client request is handled by the Gateway process and from there is forwarded to the UCMDB system.

This configuration is automatic when the Probe is configured in separate mode.

Keeping the Credentials Cache Updated

On its first successful connection to the Confidential Manager server, the Confidential Manager client downloads all relevant credentials (all credentials that are configured in the probe's domain). After the first successful communication, the Confidential Manager client retains continuous synchronization with the Confidential Manager server. Differential synchronization is performed at one-minute intervals, during which only differences between the Confidential Manager server and the Confidential Manager client are synchronized. If the credentials are changed on the UCMDB server side (such as new credentials being added, or existing credentials being updated or deleted), the Confidential Manager client receives immediate notification from the UCMDB server and performs additional synchronization.

Synchronizing All Probes with Configuration Changes

For successful communication, the Confidential Manager client must be updated with the Confidential Manager server authentication configuration (LW-SSO init string) and encryption configuration (Confidential Manager communication encryption). For example, when the init string is changed on the server, the probe must know the new init string in order to authenticate.

The UCMDB server constantly monitors for changes in the Confidential Manager communication encryption configuration and Confidential Manager authentication configuration. This monitoring is done every 15 seconds; in case a change has occurred, the updated configuration is sent to the probes. The configuration is passed to the probes in encrypted form and stored on the probe side in secured storage. The encryption of configuration being sent is done using a symmetric encryption key. By default, the UCMDB server and Data Flow Probe are installed with same default symmetric encryption key. For optimal security, it is highly recommended to change this key before adding credentials to the system. For details, see "Generate or Update the Encryption Key" on page 80.

Note: Due to the 15 second monitoring interval, it is possible that the Confidential Manager client, on the Probe side, may not be updated with the latest configuration for a period of 15 seconds.

If you choose to disable the automatic synchronization of Confidential Manager communication and authentication configuration between the UCMDB server and the Data Flow Probe, each time
you update the Confidential Manager communication and authentication configuration on the UCMDB server side, you should update all Probes with the new configuration as well. For details, see "Disable Automatic Synchronization of the Confidential Manager Client Authentication and Encryption Settings Between the Server and Probes" on page 72.

Secured Storage on the Probe

All sensitive information (such as the Confidential Manager communication and authentication configuration and the encryption key) is stored on the Probe in secure storage in the secured_storage.bin file, located in C:\hp\UCMDB\DataFlowProbe\conf\security. This secured storage is encrypted using DPAPI, which relies on the Windows user password in the encryption process. DPAPI is a standard method used to protect confidential data—such as certificates and private keys—on Windows systems. The Probe should always run under the same Windows user, so that even if the password is changed, the Probe can still read the information stored in secure storage.

Viewing Credentials Information

Note: This section deals with viewing credential information when the data direction is from the CMDB to HP Universal CMDB.

Passwords are not sent from the CMDB to the application. That is, HP Universal CMDB displays asterisks (*) in the password field, regardless of content:
Updating Credentials

Note: This section deals with updating credentials when the data direction is from HP Universal CMDB to the CMDB.

- The communication in this direction is not encrypted, therefore you should connect to the UCMDB Server using https/SSL, or ensure connection through a trusted network.

 Although the communication is not encrypted, passwords are not being sent as clear text on the network. They are encrypted using a default key and, therefore, it is highly recommended to use SSL for effective confidentiality in transit.

- You can use special characters and non-English characters as passwords.
Configure Confidential Manager Client Authentication and Encryption Settings

This task describes configuring the Confidential Manager Client Authentication and Encryption Settings on the UCMDB Server, and includes the following steps:

1. "Configure LW-SSO Settings" below
2. "Configure Confidential Manager Communication Encryption" below

Configure LW-SSO Settings

This procedure describes how to change the LW-SSO init string on the UCMDB server. This change is automatically sent to Probes (as an encrypted string), unless the UCMDB server is configured to not automatically do this. For details, see “Disable Automatic Synchronization of the Confidential Manager Client Authentication and Encryption Settings Between the Server and Probes” on page 72.

1. On the UCMDB server, launch the Web browser and enter the following address: https://localhost:8443/jmx-console.
2. Click UCMDB-UI:name=LW-SSO Configuration to open the JMX MBEAN View page.
3. Locate the setInitString method.
4. Enter a new LW-SSO init string.
5. Click Invoke.

Configure Confidential Manager Communication Encryption

This procedure describes how to change the Confidential Manager communication encryption settings on the UCMDB Server. These settings specify how the communication between the Confidential Manager client and the Confidential Manager server is encrypted. This change is automatically sent to Probes (as an encrypted string), unless the UCMDB server is configured to not automatically do this. For details, see “Disable Automatic Synchronization of the Confidential Manager Client Authentication and Encryption Settings Between the Server and Probes” on page 72.

1. On the UCMDB server, launch the Web browser and enter the following address: https://localhost:8443/jmx-console.
2. Click **UCMDB:service=Security Services** to open the JMX MBEAN View page.

3. Click the **CMGetConfiguration** method.

4. Click **Invoke**.

 The XML of the current Confidential Manager configuration is displayed.

5. Copy the contents of the displayed XML.

6. Navigate back to the **Security Services** JMX MBean View page.

7. Click the **CMSetConfiguration** method.

8. Paste the copied XML into the **Value** field.

9. Update the relevant transport-related settings and click **Invoke**.

 Example:

   ```xml
   <transport>
   <encryptTransportMode>true</encryptTransportMode>
   <CMEncryptionDecryption>
   <encryptDecryptInitString>radiohead</encryptDecryptInitString>
   <cryptoSource>lw</cryptoSource>
   <lwJCEPBECompatibilityMode>true</lwJCEPBECompatibilityMode>
   <cipherType>symmetricBlockCipher</cipherType>
   <engineName>AES</engineName>
   <algorithmModeName>CBC</algorithmModeName>
   <algorithmPaddingName>PKCS7Padding</algorithmPaddingName>
   <keySize>256</keySize>
   <pbeCount>20</pbeCount>
   <pbeDigestAlgorithm>SHA1</pbeDigestAlgorithm>
   <encodingMode>Base64Url</encodingMode>
   <useMacWithCrypto>false</useMacWithCrypto>
   <macType>hmac</macType>
   <macKeySize>256</macKeySize>
   <macHashName>SHA256</macHashName>
   </CMEncryptionDecryption>
   ```
For details about the values that can be updated, see "Confidential Manager Encryption Settings" on page 84.

Configure Confidential Manager Client Authentication and Encryption Settings Manually on the Probe

This task includes the following steps:

1. "Disable Automatic Synchronization of the Confidential Manager Client Authentication and Encryption Settings Between the Server and Probes" below
2. "Configure Confidential Manager Client Authentication and Encryption Settings on the Probe" on the next page
3. "Configure Confidential Manager Communication Encryption on the Probe" on the next page

Disable Automatic Synchronization of the Confidential Manager Client Authentication and Encryption Settings Between the Server and Probes

By default, the UCMDB Server is configured to automatically send the Confidential Manager/LW-SSO settings to all Probes. This information is sent as an encrypted string to the Probes, which decrypt the information upon retrieval. You can configure the UCMDB Server to not send the Confidential Manager/LW-SSO configuration files automatically to all Probes. In this case, it is your responsibility to manually update all Probes with the new Confidential Manager/LW-SSO settings.

To disable automatic synchronization of Confidential Manager/LW-SSO settings:

1. In UCMDB, click Administration > Infrastructure Settings Manager > General Settings.
2. Select Enable automatic synchronization of CM/LW-SSO configuration and init string with probe.
3. Click the Value field and change True to False.
4. Click the Save button.
5. Restart the UCMDB server.
Configure Confidential Manager Client Authentication and Encryption Settings on the Probe

This procedure is relevant if the UCMDB Server has been configured to not send LW-SSO/Confidential Manager configuration and settings automatically to Probes. For details, see "Disable Automatic Synchronization of the Confidential Manager Client Authentication and Encryption Settings Between the Server and Probes" on the previous page.

1. On the Probe machine, launch the Web browser and enter the following address:

 Note: If the Probe Manager and the Probe Gateway are running as separate processes, the address should be entered on the machine that is running the Probe Manager as follows:

2. Click `type=CMClient` to open the JMX MBEAN View page.

3. Locate the `setLWSSOInitString` method and provide the same init string that was provided for UCMDB’s LW-SSO configuration.

4. Click the `setLWSSOInitString` button.

Configure Confidential Manager Communication Encryption on the Probe

This procedure is relevant if the UCMDB Server has been configured to not send LW-SSO/Confidential Manager configuration and settings automatically to Probes. For details, see "Disable Automatic Synchronization of the Confidential Manager Client Authentication and Encryption Settings Between the Server and Probes" on the previous page.

1. On the Probe machine, launch the Web browser and enter the following address:

 Note: If the Probe Manager and the Probe Gateway are running as separate processes, the address should be entered on the machine that is running the Probe Manager as follows:

2. Click `type=CMClient` to open the JMX MBEAN View page.

3. Update the following transport-related settings:
Note: You must update the same settings that you updated on the UCMDB server. To do this, some of the methods that you update on the Probe may require more than one parameter. To see the current probe configuration, click `displayTransportConfiguration` in the JMX MBEAN View page. For details, see "Configure Confidential Manager Communication Encryption" on page 70. For details about the values that can be updated, see "Confidential Manager Encryption Settings" on page 84.

a. `setTransportInitString` changes the `encryptDecryptInitString` setting.

b. `setTransportEncryptionAlgorithm` changes Confidential Manager settings on the Probe according to the following map:
 - Engine name refers to the `<engineName>` entry
 - Key size refers to the `<keySize>` entry
 - Algorithm padding name refers to the `<algorithmPaddingName>` entry
 - PBE count refers to the `<pbeCount>` entry
 - PBE digest algorithm refers to the `<pbeDigestAlgorithm>` entry

c. `setTransportEncryptionLibrary` changes Confidential Manager settings on the Probe according to the following map:
 - Encryption Library name refers to the `<cryptoSource>` entry
 - Support previous lightweight cryptography versions refers to the `<lwJCEPBECompatibilityMode>` entry

d. `setTransportMacDetails` change Confidential Manager settings on the Probe according to the following map:
 - Use MAC with cryptography refers to the `<useMacWithCrypto>` entry
 - MAC key size refers to the `<macKeySize>` entry

4. Click the `reloadTransportConfiguration` button to make the changes effective on the Probe.

For details about the different settings and their possible values, see "Confidential Manager Encryption Settings" on page 84.

Configure the Confidential Manager Client Cache

This task includes the following steps:
Configure the Confidential Manager Client’s Cache Mode on the Probe

The Confidential Manager client stores credentials information in the cache and updates it when the information changes on the Server. The cache can be stored on the file system or in memory:

- **When stored on the file system**, even if the Probe is restarted and cannot connect to the Server, the credentials information is still available.
- **When stored in memory**, if the Probe is restarted, the cache is cleared and all information is retrieved again from the Server. If the Server is not available, the Probe does not include any credentials, so no discovery or integration can run.

To change this setting:

1. Open the `DataFlowProbe.properties` file in a text editor. This file is located in the `c:\hp\UCMDB\DataFlowProbe\conf` folder.
2. Locate the following attribute: `com.hp.ucmdb.discovery.common.security.storeCMData=true`
 - To store the information on the file system, leave the default *(true)*.
 - To store the information in memory, enter *(false)*.
4. Restart the Probe.

Configure the Confidential Manager Client’s Cache Encryption Settings on the Probe

This procedure describes how to change the encryption settings of the Confidential Manager client’s file system cache file. Note that changing the encryption settings for the Confidential Manager client’s file system cache causes the file system cache file to be recreated. This recreation process requires restarting the Probe and full synchronization with the UCMDB Server.

1. On the Probe machine, launch the Web browser and enter the following address: `https://localhost:8453`.
Note: If the Probe Manager and the Probe Gateway are running as separate processes, the address should be entered on the machine that is running the Probe Manager as follows: https://localhost:8454.

2. Click type=CMClient to open the JMX MBEAN View page.

3. Update the following cache-related settings:

 Note: Some of the methods that you update on the Probe may require more than one parameter. To see the current probe configuration, click displayCacheConfiguration in the JMX MBEAN View page.

 a. setCacheInitString changes the file system cache <encryptDecryptInitString> setting.

 b. setCacheEncryptionAlgorithm changes the file system cache settings according to the following map:

 - Engine name refers to the <engineName> entry
 - Key size refers to the <keySize> entry
 - Algorithm padding name refers to the <algorithmPaddingName> entry
 - PBE count refers to the <pbeCount> entry
 - PBE digest algorithm refers to the <pbeDigestAlgorithm> entry

 c. setCacheEncryptionLibrary changes the cache file system settings according to the following map:

 - Encryption Library name refers to the <cryptoSource> entry
 - Support previous lightweight cryptography versions refers to the <lwJCEPBECompatibilityMode> entry

 d. setCacheMacDetails changes the cache file system settings according to the following map:

 - Use MAC with cryptography refers to the <useMacWithCrypto> entry
 - MAC key size refers to the <macKeySize> entry

4. Click the reloadCacheConfiguration button to make the changes effective on the Probe. This causes the Probe to restart.

 Note: Make sure that no job is running on the Probe during this action.

For details about the different settings and their possible values, see "Confidential Manager Encryption Settings" on page 84.
Export and Import Credential and Range Information in Encrypted Format

You can export and import credentials and network range information in encrypted format in order to copy the credentials information from one UCMDB Server to another. For example, you might perform this operation during recovery following a system crash or during upgrade.

- **When exporting credentials information**, you must enter a password (of your choosing). The information is encrypted with this password.
- **When importing credentials information**, you must use the same password that was defined when the DSD file was exported.

Note: The exported credentials document also contains ranges information that is defined on the system from which the document was exported. During the import of the credentials document, ranges information is imported as well.

To export credentials information from the UCMDB Server:

1. On the UCMDB Server, launch the Web browser and enter the following address: `https://localhost:8443/jmx-console`. You may have to log in with a user name and password.
2. Click **UCMDB:service=DiscoveryManager** to open the JMX MBEAN View page.
3. Locate the **exportCredentialsAndRangesInformation** operation. Do the following:
 - Enter your customer ID (the default is 1).
 - Enter a name for the exported file.
 - Enter your password.
 - Set `isEncrypted=True` if you want the exported file to be encrypted with the provided password, or `isEncrypted=False` if you want the exported file to not be encrypted (in which case passwords and other sensitive information are not exported).
4. Click **Invoke** to export.

 When the export process completes successfully, the file is saved to the following location: `c:\hp\UCMDB\UCMDBServer\conf\discovery\<customer_dir>`.

To import credentials information from the UCMDB Server:
1. On the UCMDB Server, launch the Web browser and enter the following address:
 You may have to log in with a user name and password.

2. Click UCMDB:service=DiscoveryManager to open the JMX MBEAN View page.

3. Locate the importCredentialsAndRangesInformation operation.

4. Enter your customer ID (the default is 1).

5. Enter the name of the file to import. This file must be located in
 c:\hp\UCMDB\UCMDBServer\conf\discovery\<customer_dir>.

6. Enter the password. This must be the same password that was used when the file was exported.

7. Click Invoke to import the credentials.

Remove Credential and Range Information by Domain Name

This task describes how to remove credential and range information for a selected domain.

1. On the UCMDB server, launch the Web browser and navigate to: https://localhost:8443/jmx-console. You may have to log in with a user name and password (default user name is
 sysadmin).

2. Locate UCMDB:service=Discovery Manager and click the link to jump to the Operations table.

3. Locate the cleanCredentialsAndRangesInformation operation.

4. In the Value field for customerID, enter your customer ID.

5. In the Value field for domainName, enter the name of the domain that you want to remove.

6. Click Invoke.

Change Confidential Manager Client Log File Message Level

The Probe provides two log files that contain information regarding Confidential Manager-related
communication between the Confidential Manager server and the Confidential Manager client. The files
are:
"Confidential Manager Client Log File" below

"LW-SSO Log File" below

Confidential Manager Client Log File

The **security.cm.log** file is located in the **c:\hp\UCMDB\DataFlowProbe\runtime\log** folder.

The log contains information messages exchanged between the Confidential Manager server and the Confidential Manager client. By default, the log level of these messages is set to INFO.

To change the log level of the messages to DEBUG level:

1. On the Data Flow Probe Manager server, navigate to **c:\hp\UCMDB\DataFlowProbe\conf\log**.
2. Open the **security.properties** file in a text editor.
3. Change the line from:

   ```
   loglevel.cm=INFO
   ```

 to:

   ```
   loglevel.cm=DEBUG
   ```
4. Save the file.

LW-SSO Log File

The **security.lwsso.log** file is located in the **c:\hp\UCMDB\DataFlowProbe\runtime\log** folder.

The log contains information messages related to LW-SSO. By default, the log level of these messages is set to INFO.

To change the log level of the messages to DEBUG level:

1. On the Data Flow Probe Manager server, navigate to **c:\hp\UCMDB\DataFlowProbe\conf\log**.
2. Open the **security.properties** file in a text editor.
3. Change the line from:

   ```
   loglevel.lwsso=INFO
   ```

 to:

   ```
   loglevel.lwsso=DEBUG
   ```
Generate or Update the Encryption Key

You can generate or update an encryption key to be used for encryption or decryption of Confidential Manager communication and authentication configurations exchanged between the UCMDB Server and the Data Flow Probe. In each case (generate or update), the UCMDB Server creates a new encryption key based on parameters that you supply (for example, key length, extra PBE cycles, JCE provider) and distributes it to the Probes.

The result of running the generateEncryptionKey method is a new generated encryption key. This key is stored only in secured storage and its name and details are not known. If you reinstall an existing Data Flow Probe, or connect a new Probe to the UCMDB Server, this new generated key is not recognized by the new Probe. In these cases, it is preferable to use the changeEncryptionKey method to change encryption keys. This way, when you reinstall a Probe or install a new Probe, you can import the existing key (whose name and location you know) by running the importEncryptionKey method on the Probe JMX console.

Note:

- The difference between the methods used to create a key (generateEncryptionKey) and update a key (changeEncryptionKey) is that generateEncryptionKey creates a new, random encryption key, while changeEncryptionKey imports an encryption key whose name you provide.
- Only one encryption key can exist on a system, no matter how many Probes are installed.

This task includes the following steps:

- "Generate a New Encryption Key" on the next page
- "Update an Encryption Key on a UCMDB Server" on page 82
- "Update an Encryption Key on a Probe" on page 83
- "Manually Change the Encryption Key when the Probe Manager and Probe Gateway are Installed on Separate Machines" on page 83
- "Define Several JCE Providers" on page 84
Generate a New Encryption Key

You can generate a new key to be used by the UCMDB Server and Data Flow Probe for encryption or decryption. The UCMDB Server replaces the old key with the new generated key, and distributes this key among the Probes.

To generate a new encryption key through the JMX console:

1. On the UCMDB server, launch the Web browser and enter the following address:

 `https://localhost:8443/jmx-console`

 You may have to log in with a user name and password.

2. Click `UCMDB:service=DiscoveryManager` to open the JMX MBEAN View page.

3. Locate the `generateEncryptionKey` operation.

 a. In the `customerId` parameter box, enter 1 (the default).

 b. For `keySize`, specify the length of the encryption key. Valid values are 128, 192, or 256.

 c. For `usePBE`, specify True or False:

 - True: use additional PBE hash cycles.
 - False: do not use additional PBE hash cycles.

 d. For `jceVendor`, you can choose to use a non-default JCE provider. If the box is empty, the default provider is used.

 e. For `autoUpdateProbe`, specify True or False:

 - True: the server distributes the new key to the Probes automatically.
 - False: the new key should be placed on the Probes manually.

 f. For `exportEncryptionKey`, specify True or False.

 - True: In addition to creating the new password and storing it in secured storage, the Server exports the new password to the file system (`c:\hp\UCMDB\UCMDBServer\conf\discovery\key.bin`). This option enables you to update Probes manually with the new password.

 - False: The new password is not exported to the file system. To update Probes manually, set `autoUpdateProbe` to False and `exportEncryptionKey` to True.

 Caution: Make sure that the Probe is up and connected to the server. If the Probe goes down, the key cannot reach the Probe. If you change the key before the Probe goes down, the key cannot reach the Probe.
down, once the Probe is up again, the key is sent again to the Probe. However, if you have changed the key more than once before the Probe goes down, you must change the key manually through the JMX console. (Select False for exportEncryptionKey).

4. Click **Invoke** to generate the encryption key.

Update an Encryption Key on a UCMDB Server

You use the `changeEncryptionKey` method to import your own encryption key to the UCMDB server and distribute it among all Probes.

To update an encryption key through the JMX Console:

1. Copy the key.bin file you generated in "Generate a New Encryption Key" on the previous page to the `C:\hp\UCMDB\UCMDBServer\conf\discovery\customer_1` directory, and rename the key.bin file. For example, `key_1.bin`.

 Note: Make sure you rename the key.bin file.

2. On the UCMDB Server, launch the Web browser and enter the following address: `https://localhost:8443/jmx-console`. You may have to log in with a user name and password.

3. Click **UCMDB:service=DiscoveryManager** to open the JMX MBEAN View page.

4. Locate the `changeEncryptionKey` operation.
 a. In the `customerId` parameter box, enter 1 (the default).
 b. For `newKeyFileName`, enter the name of the new key.
 c. For `keySizeInBits`, specify the length of the encryption key. Valid values are 128, 192, or 256.
 d. For `usePBE`, specify True or False:
 - **True**: use additional PBE hash cycles.
 - **False**: do not use additional PBE hash cycles.
 e. For `jceVendor`, you can choose to use a non-default JCE provider. If the box is empty, the default provider is used.
 f. For `autoUpdateProbe`, specify True or False:
 - **True**: the server distributes the new key to the Probes automatically.
 - **False**: the new key should be distributed manually using the Probe JMX console.
Caution: Make sure that the Probe is up and connected to the server. If the Probe goes down, the key cannot reach the Probe. If you change the key before the Probe goes down, once the Probe is up again, the key is sent again to the Probe. However, if you have changed the key more than once before the Probe goes down, you must change the key manually through the JMX console. (Select False for autoUpdateProbe).

5. Click Invoke to generate and update the encryption key.

Update an Encryption Key on a Probe

If you choose not to distribute an encryption key from the UCMDB Server to all Probes automatically (because of security concerns), you should download the new encryption key to all Probes and run the importEncryptionKey method on the Probe:

1. Place the encryption key file in C:\hp\UCMDB\DataFlowProbe\conf\security.
2. On the Probe machine, launch the Web browser and enter the following address:
 You may have to log in with a user name and password.

 Note: If the Probe Manager and the Probe Gateway are running as separate processes, the address should be entered on the machine that is running the Probe Manager as follows:
3. On the Probe domain, click type=SecurityManagerService.
4. Locate the importEncryptionKey method.
5. Enter the name of the encryption key file that resides in
 C:\hp\UCMDB\DataFlowProbe\conf\security. This file contains the key to be imported.
6. Click the importEncryptionKey button.
7. Perform a restart of the probe.

Manually Change the Encryption Key when the Probe Manager and Probe Gateway are Installed on Separate Machines

1. On the Probe Manager machine, start the Probe Manager service (Start > Programs > HP UCMDB > Probe Manager).
2. Import the key from the server, using the Probe Manager JMX. For details, see "Generate a New Encryption Key" on page 81.

3. After the encryption key is imported successfully, restart the Probe Manager and Probe Gateway services.

Define Several JCE Providers

When you generate an encryption key through the JMX Console, you can define several JCE providers, using the changeEncryptionKey and generateEncryptionKey methods.

To change the default JCE provider:

1. Register the JCE provider jar files in $JRE_HOME/lib/ext.
2. Copy the jar files to the $JRE_HOME folder:
 - For the UCMDB Server: $JRE_HOME resides at: c:\hp\UCMDB\UCMDBServer\bin\jre
 - For the Data Flow Probe: $JRE_HOME resides at: c:\hp\UCMDB\DataFlowProbe\bin\jre
3. Add the provider class at the end of the provider list in the $JRE_HOME/lib/security/java.security file.
4. Update the local_policy.jar and US_export_policy.jar files to include unlimited JCE policies. You can download these jar files from the Sun website.
5. Restart the UCMDB Server and the Data Flow Probe.
6. Locate the JCE vendor field for the changeEncryptionKey or generateEncryptionKey method, and add the name of the JCE provider.

Confidential Manager Encryption Settings

This table lists the encryption settings that can be changed using various JMX methods. These encryption settings are relevant for encryption of communications between the Confidential Manager client and the Confidential Manager server, as well as for encryption of the Confidential Manager client's cache.
<table>
<thead>
<tr>
<th>Confidential Manager Setting Name</th>
<th>Probes Confidential Manager Setting Name</th>
<th>Setting Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cryptoSource</td>
<td>Encryption Library name</td>
<td>This setting defines which encryption library to use.</td>
<td>lw, jce, windowsDPAPI, lwJCECompatible</td>
<td>lw</td>
</tr>
<tr>
<td>lwJCEPBE Compatibility Mode</td>
<td>Support previous lightweight cryptography versions</td>
<td>This setting defines whether to support previous lightweight cryptography or not.</td>
<td>true, false</td>
<td>true</td>
</tr>
<tr>
<td>engineName</td>
<td>Engine name</td>
<td>Encryption mechanism name</td>
<td>AES, DES, 3DES, Blowfish</td>
<td>AES</td>
</tr>
<tr>
<td>keySize</td>
<td>Key size</td>
<td>encryption key length in bits</td>
<td>For AES - 128, 192 or 256; For DES - 64; For 3DES - 192; For Blowfish - any number between 32 and 448</td>
<td>256</td>
</tr>
<tr>
<td>algorithm Padding Name</td>
<td>Algorithm padding name</td>
<td>Padding standards</td>
<td>PKCS7Padding, PKCS5Padding</td>
<td>PKCS7Padding</td>
</tr>
<tr>
<td>pbeCount</td>
<td>PBE count</td>
<td>The number of times to run the hash to create the key from password (init string)</td>
<td>Any positive number</td>
<td>20</td>
</tr>
<tr>
<td>pbeDigest Algorithm</td>
<td>PBE digest algorithm</td>
<td>Hashing type</td>
<td>SHA1, SHA256, MD5</td>
<td>SHA1</td>
</tr>
<tr>
<td>useMacWith Crypto</td>
<td>Use MAC with cryptography</td>
<td>Indication if to use MAC with the cryptography</td>
<td>true, false</td>
<td>false</td>
</tr>
<tr>
<td>macKeySize</td>
<td>MAC key size</td>
<td>Depends on MAC algorithm</td>
<td>256</td>
<td>256</td>
</tr>
</tbody>
</table>
Troubleshooting and Limitations - Data Flow Credentials Management

If you change the default domain name on the UCMDB server, you must first verify that the Data Flow Probe is not running. After the default domain name is applied, you must execute the `DataFlowProbe\tools\clearProbeData.bat` script on the Data Flow Probe side.

Note: Execution of the `clearProbeData.bat` script will cause a discovery cycle on the Probe side once the Probe is up.
Chapter 5: Data Flow Probe Hardening

This chapter includes:

Modify the PostgreSQL Database Encrypted Password ... 88
The clearProbeData Script: Usage .. 89
Set the JMX Console Encrypted Password ... 89
Set the UpLoadScanFile Password ... 91
Remote Access to the PostgreSQL Server .. 92
Enable Basic Authentication between UCMDB Server and Data Flow Probe 92
 Enable Basic Authentication ... 93
 Change Credentials for Basic Authentication .. 93
 Configure User Name and Password on a New Probe .. 93
Configure Basic Authentication for Upgraded Data Flow Probes (Separate Mode) Using Port 1741 or 1742 ... 94
Enable SSL between UCMDB Server and Data Flow Probe 95
 Overview .. 96
Keystores and Truststores .. 96
Enable SSL with Server (One-Way) Authentication ... 97
Enable Mutual (Two-Way) Certificate Authentication .. 100
How to Change the aioptionrc File Permission for Agents or Scanners 108
Encrypt the Probe Keystore and Truststore Passwords .. 109
Server and Data Flow Probe Default Keystore and Truststore 109
 UCMDB Server ... 110
 Data Flow Probe ... 110
How to Change the aioptionrc File Permission for Agents or Scanners 111
Create a Keystore for the Data Flow Probe .. 111
Set Master Key for Password Encryption on Data Flow Probe 112
Enable Secure Communication between Universal Discovery Agents and Data Flow Probes Using CA-Signed Certificates ... 113
Modify the PostgreSQL Database Encrypted Password

This section explains how to modify the encrypted password for the PostgreSQL database user.

1. Create the Encrypted Form of a Password (AES, 192-bit key)

 Note: In FIPS mode, it is 256-bit key.

 a. Access the Data Flow Probe JMX console. On the probe machine, launch a Web browser and enter the following address: `https://localhost:8453`.

 You may have to log in with a user name and password.

 Note: If you have not created a user, use the default user name `sysadmin` and the password to log in.

 b. Locate the `Type=MainProbe` service and click the link to open the Operations page.

 c. Locate the `getEncryptedDBPassword` operation.

 d. In the `DB Password` field, enter the password to be encrypted.

 e. Invoke the operation by clicking the `getEncryptedDBPassword` button.

 The result of the invocation is an encrypted password string, for example:

      ```
      ```

2. Stop the Data Flow Probe

 Start > All Programs > HP UCMDB > Stop Data Flow Probe

3. Run the `set_dbuser_password.cmd` Script

 This script is located in the following folder:

 `C:\hp\UCMDB\DataFlowProbe\tools\dbscripts\set_dbuser_password.cmd`

 Run the `set_dbuser_password.cmd` script with the new password as the first argument, and the PostgreSQL Root Account password as the second argument.

 For example:

   ```
   set_dbuser_password <my_password><root_password>.
   ```

 The password must be entered in its unencrypted form (as plain text).
4. Update the Password in the Data Flow Probe Configuration Files

 a. The password must reside encrypted in the configuration files. To retrieve the password's encrypted form, use the `getEncryptedDBPassword` JMX method, as explained in step 1.

 b. Add the encrypted password to the following properties in the `C:\hp\UCMDB\DataFlowProbe\conf\DataFlowProbe.properties` file.

 - `appilog.agent.probe.jdbc.pwd`
 For example:

        ```
        appilog.agent.probe.jdbc.user = mamprobe
        ```

 - `appilog.agent.local.jdbc.pwd`

 - `appilog.agent.normalization.jdbc.pwd`

5. Start the Data Flow Probe

 Start > All Programs > HP UCMDB > Start Data Flow Probe

The clearProbeData Script: Usage

To recreate the database user without altering its current password, run the `clearProbeData.bat` script for Windows or the `clearProbeData.sh` script for Linux.

After running the script:

- Review the following file for errors:

  ```
  C:\hp\UCMDB\DataFlowProbe\runtime\log\probe_setup.log
  ```
 for Windows,

  ```
  /opt/hp/UCMDB/DataFlowProbe/runtime/log/probe_setup.log
  ```
 for Linux.

- Delete the file, as it contains the database password.

 Note: Do not run this script unless instructed to do so by HP Software Support.

Set the JMX Console Encrypted Password

This section explains how to encrypt the password for the JMX user. The encrypted password is stored in the `DataFlowProbe.properties` file. Users must log in to access the JMX console.
1. Create the Encrypted Form of a Password (AES, 192-bit key)

 Note: In FIPS mode, it is **256-bit** key.

 a. Access the Data Flow Probe JMX console. On the probe machine, launch a Web browser and enter the following address: **https://localhost:8453**.

 You may have to log in with a user name and password.

 Note: If you have not created a user, use the default user name sysadmin and the password to log in.

 b. Locate the **Type=MainProbe** service and click the link to open the Operations page.

 c. Locate the **getEncryptedKeyPassword** operation.

 d. In the **Key Password** field, enter the password to be encrypted.

 e. Invoke the operation by clicking the **getEncryptedKeyPassword** button.

 The result of the invocation is an encrypted password string, for example:

 85,-9,-61,11,105,-93,-81,118

2. Stop the Data Flow Probe

 Start > All Programs > HP UCMDB > Stop Data Flow Probe

3. Add the Encrypted Password

 Add the encrypted password to the following property in the **C:\hp\UCMDB\DataFlowProbe\conf\DataFlowProbe.properties** file.

 appilog.agent.Probe.JMX.BasicAuth.Pwd

 For example:

 appilog.agent.Probe.JMX.BasicAuth.User=sysadmin
 appilog.agent.Probe.JMX.BasicAuth.Pwd=12,-35,-37,82,-2,20,57,-40,38,80,-111,-99,-64,-5,35,-122

 Note: To disable authentication, leaves these fields empty. If you do so, users can open the main page of the Probe’s JMX console without entering authentication.

4. Start the Data Flow Probe
Set the UpLoadScanFile Password

This section explains how to set the password for UpLoadScanFile, used for off-site scan saving. The encrypted password is stored in the DataFlowProbe.properties file. Users must log in to access the JMX console.

1. Create the Encrypted Form of a Password (AES, 192-bit key)
 a. Access the Data Flow Probe JMX console. On the probe machine, launch a Web browser and enter the following address: https://localhost:8453.
 You may have to log in with a user name and password.

 Note: If you have not created a user, use the default user name sysadmin and the password to log in.
 b. Locate the Type=MainProbe service and click the link to open the Operations page.
 c. Locate the getEncryptedKeyPassword operation.
 d. In the Key Password field, enter the password to be encrypted.
 e. Invoke the operation by clicking the getEncryptedKeyPassword button.
 The result of the invocation is an encrypted password string, for example:

 85,-9,-61,11,105,-93,-81,118

2. Stop the Data Flow Probe

Start > All Programs > HP UCMDB > Stop Data Flow Probe

3. Add the Encrypted Password

Add the encrypted password to the following property in the C:\hp\UCMDB\DataFlowProbe\conf\DataFlowProbe.properties file.

For example:
4. Start the Data Flow Probe

Start > All Programs > HP UCMDB > Start Data Flow Probe

Test the result in a Web browser.

Remote Access to the PostgreSQL Server

This section explains how to permit/restrict access to the PostgreSQL Data Flow Probe Account from remote machines.

Note:
- By default, access is restricted.
- You cannot access the PostgreSQL Root Account from remote machines.

To permit PostgreSQL access:

- Run the following script in a command prompt window:

```
C:\hp\UCMDB\DataFlowProbe\tools\dbscripts\enable_remote_user_access.cmd
```

To restrict PostgreSQL access:

- Run the following script in a command prompt window:

```
C:\hp\UCMDB\DataFlowProbe\tools\dbscripts\remove_remote_user_access.cmd
```

Enable Basic Authentication between UCMDB Server and Data Flow Probe

You can set up Basic Authentication for the connection between the Data Flow Probe and the UCMDB Server. The user name and password are required before the connection is established.

For maximum security level, it is recommended that you use the Mutual Authentication mode, for details, see "Enable SSL between UCMDB Server and Data Flow Probe" on page 95.
Enable Basic Authentication

Follow the procedure below to enable the Basic Authentication:

1. Log in to UCMDB as an administrator, and then go to Administration > Infrastructure Settings Manager.
2. Locate the Enable Basic Authentication for HTTP connections from probe setting, and then set the value to True.
3. Change the password for Basic Authentication using the changeBasicAuthenticationCredential JMX method to meet the default password policy.

 For detailed instructions, see "Change Credentials for Basic Authentication" below.

4. Restart the UCMDB server.

Change Credentials for Basic Authentication

Follow the steps below to change the credentials for Basic Authentication:

1. Log in to the UCMDB JMX console, and then go to UCMDB:service=Discovery Manager::changeBasicAuthenticationCredential.
2. Enter the relevant customer ID and desired credentials.
3. Click Invoke.

After you perform the above operation, the credentials for Basic Authentication will be automatically updated on all probes that are already connected to the UCMDB server. However, if you want to connect a new probe to the UCMDB server, you have to manually update the credentials on the probe. For details, see "Configure User Name and Password on a New Probe" below.

Configure User Name and Password on a New Probe

If the probe has not been connected to the UCMDB server, you have to set up the credentials on the probe before you can connect the probe to the UCMDB server.

To do this, follow these steps:
1. Open the following file on the probe using a text editor:

 `<probe_installation_folder>\Conf\DataFlowProbe.properties`

2. Set the credentials in the following settings:

 appilog.agent.Probe.BasicAuth.User=
 appilog.agent.Probe.BasicAuth.Pwd=

 Note: The password uses encrypted text in the DataFlowProbe.properties file. You can use the `getEncryptedKeyPassword()` method to get the encrypted text of the desired password. The `getEncryptedKeyPassword()` method is available on the Data Flow Probe JMX console. For more information about how to use the `getEncryptedKeyPassword()` method, refer to the HPE Universal CMDB JMX Reference Guide.

3. Save the file.

4. Restart the probe.

Configure Basic Authentication for Upgraded Data Flow Probes (Separate Mode) Using Port 1741 or 1742

Starting from version 10.22, after installing a new Data Flow Probe, basic authentication is enabled automatically for the probe if the probe is installed in separate mode and that the probe can be accessed using port 1741 or 1742. This is controlled by the following new settings available in the `DataFlowProbe.properties` file for a newly installed probe:

```properties
appilog.agent.Probe.rmi.BasicAuth.Enabled=true
appilog.agent.Probe.rmi.BasicAuth.User=sysadmin
```

These settings are not added to the `DataFlowProbe.properties` file for upgraded probes during upgrade, but basic authentication is enabled automatically.

However, you can disable basic authentication for upgraded separate mode probes that can be accessed using port 1741 or 1742, or change the default basic authentication password.

To do so,
1. Open the following file on both of the probe manager and probe gateway instances using a text editor:

 `<probe_installation_folder>\conf\DataFlowProbe.properties`

2. Add the following settings to the file manually:

   ```plaintext
   appilog.agent.Probe.rmi.BasicAuth.Enabled=false
   appilog.agent.Probe.rmi.BasicAuth.User=sysadmin
   appilog.agent.Probe.rmi.BasicAuth.Pwd=<encrypted password>
   ```

 - Setting the `appilog.agent.Probe.rmi.BasicAuth.Enabled` parameter to `true` enables basic authentication for the probe in separate mode that uses port 1741 or 1742. To disable basic authentication for the probe, simply set the parameter to `false`. The default value is `true`.

 Note: Make sure you set the parameter to the same value on both instances of probe manager and probe gateway.

 - The default user name value for the `appilog.agent.Probe.rmi.BasicAuth.User` setting is `sysadmin`.

 - The password uses encrypted text in the `DataFlowProbe.properties` file. To change the default password, use the `getEncryptedKeyPassword()` JMX method to get the encrypted text of the desired password.

 For more information about how to use the `getEncryptedKeyPassword()` method, see the `HPE Universal CMDB JMX Reference Guide`.

3. Save the file.

4. Restart the probe.

Enable SSL between UCMDB Server and Data Flow Probe

You can set up authentication for both the Data Flow Probe and the UCMDB Server with certificates. The certificate for each component is sent and authenticated before the connection is established.

Note: The following method of enabling SSL on the Data Flow Probe is the most secure of the methods and is therefore the recommended communication mode. This method replaces the procedure for basic authentication.

This section includes the following topics:
Overview

UCMDB supports the following modes of communication between the UCMDB Server and the Data Flow Probe:

- **Server Authentication.** This mode uses SSL, and the Probe authenticates the UCMDB Server certificate. For details, see "Enable SSL with Server (One-Way) Authentication" on the next page.

- **Mutual Authentication.** This mode uses SSL and enables both Server authentication by the Probe and client authentication by the Server. For details, see "Enable Mutual (Two-Way) Certificate Authentication" on page 100.

- **Standard HTTP.** No SSL communication. This is the default mode, and the Data Flow Probe component in UCMDB does not require any certificates. The Data Flow Probe communicates with the server through the standard HTTP protocol. It is recommended that you use the Mutual Authentication mode for maximum security level.

Note: Discovery cannot use certificate chains when working with SSL. Therefore, if you are using certificate chains, you should generate a self-signed certificate for the Data Flow Probe to be able to communicate with the UCMDB Server.

Keystores and Truststores

The UCMDB Server and the Data Flow Probe work with keystores and truststores:

- **Keystore.** A file holding key entries (a certificate and a matching private key).

- **Truststore.** A file holding certificates that are used to verify a remote host (for example, when using server authentication, the Data Flow Probe's truststore should include the UCMDB Server certificate).

Mutual Authentication Limitation

The Data Flow Probe keystore (as defined in `C:\HP\UCMDB\DataFlowProbe\conf\security\ssl.properties`) must contain only 1 (one) key entry.
Enable SSL with Server (One-Way) Authentication

This uses SSL, and the Probe authenticates the Server's certificate.

| Note: | The certificate on the Probe will not be used in the one-way authentication. |

This task includes:

- "Prerequisites" below
- "UCMDB Server Configuration" below
- "Data Flow Probe Configuration" on page 99
- "Restart the Machines" on page 99

Prerequisites

1. Verify that both UCMDB and the Data Flow Probe are running.

 | Note: | If the Probe is installed in separate mode, these instructions refer to the Probe Gateway. |

2. If UCMDB or the Data Flow Probe are not installed in the default folders, note the correct location, and change the commands accordingly.

UCMDB Server Configuration

1. Export the UCMDB Certificate
 a. Open the command prompt and run the command:

   ```
   C:\HP\UCMDB\UCMDBServer\bin\jre\bin\keytool.exe -export -alias <certificate alias> -keystore <Keystore file path> -file C:\HP\UCMDB\UCMDBServer\conf\security\server.cert
   ```

 where:

 - **certificate alias** is the name given to the certificate.
 - **Keystore file path** is the full path of the location of the keystore file.

 For example, for the out-of-the-box server.keystore use the following command:
2. Harden the Data Flow Probe connector in UCMDB

 a. Access the UCMDB JMX console: In your Web browser, enter the following URL:
 https://<ucmdb machine name or IP address>:8443/jmx-console. You may have to log in
 with a user name and password.

 b. Select the service: **Ports Management Services**.

 c. Invoke the **PortsDetails** method, and note the port number for HTTPS. (Default: 8443) Ensure
 that the value in the **Is Enabled** column is **True**.

 d. Return to **Ports Management Services**.

 e. To map the Data Flow Probe connector to server authentication mode, invoke the
 mapComponentToConnectors method with the following parameters:

 - **componentName**: mam-collectors
 - **isHTTPS**: true
 - **All other flags**: false

 The following message is displayed:

      ```
      Operation succeeded. Component mam-collectors is now mapped to: HTTPS ports.
      ```

 Note: If you want to use multiple authentication methods, make sure you check the ports
 used by each of them and set them to **true** (when mapping both cm and mam-collectors).

 f. Return to **Ports Management Services**.

 g. To map the Confidential Manager connector to server authentication mode, invoke the
 mapComponentToConnectors method with the following parameters:

 - **componentName**: cm
 - **isHTTPS**: true
 - **All other flags**: false
The following message is displayed:

```
Operation succeeded. Component cm is now mapped to: HTTPS ports.
```

Note: If you want to use multiple authentication methods, make sure you check the ports used by each of them and set them to **true** (when mapping both cm and mam-collectors).

3. **Copy the UCMDB certificate to each Probe machine**

Copy the certificate file, `C:\HP\UCMDB\UCMDBServer\conf\security\server.cert`, on the UCMDB Server machine to the following folder on each Data Flow Probe machine:

`C:\HP\UCMDB\DataFlowProbe\conf\security\`

Data Flow Probe Configuration

Note: You must configure each Data Flow Probe machine.

1. **Import the server.cert file, created in "Export the UCMDB Certificate" on page 97, to the Probe’s Truststore.**

 a. Open the command prompt and run the command:

   ```
   C:\HP\UCMDB\DataFlowProbe\bin\jre\bin\keytool.exe -import -v -keystore C:\HP\UCMDB\DataFlowProbe\conf\security\HPProbeTrustStore.jks -file C:\HP\UCMDB\DataFlowProbe\conf\security\server.cert -alias hpcert
   ```

 b. Enter the keystore password: logomania

 c. When asked **Trust this certificate?**, press **y** and then **Enter**.

 The following message is displayed:

   ```
   Certificate was added to keystore.
   ```

2. **Open the DataFlowProbe.properties file located in: C:\HP\UCMDB\DataFlowProbe\conf**

 a. Update the `appilog.agent.probe.protocol` property to **HTTPS**.

 b. Update the `serverPortHttps` property to the relevant port number. (Use the port number from step 2c of "UCMDB Server Configuration" on page 97.)

Restart the Machines

Restart both the UCMDB server and the Probe machines.
Enable Mutual (Two-Way) Certificate Authentication

This mode uses SSL and enables both Server authentication by the Probe and client authentication by the Server. Both the Server and the Probe send their certificates to the other entity for authentication.

Note: It is possible to enable mutual certificate authentication using certificate chain. For details about generating certificate chain, see "(Optional) Generate the UCMDB Certificate Chain" on page 105.

This task includes:

1. "Prerequisites" below
2. "Initial UCMDB Server Configuration" below
3. "Data Flow Probe Configuration" on page 102
4. "Further UCMDB Server Configuration" on page 104
5. "Restart the Machines" on page 105

1. Prerequisites
 a. Verify that both UCMDB and the Data Flow Probe are running.

 Note: If the Probe is installed in separate mode, these instructions refer to the Probe Gateway.

 b. If UCMDB or the Data Flow Probe are not installed in the default folders, note the correct location, and change the commands accordingly.

2. Initial UCMDB Server Configuration
 a. Export the UCMDB Certificate
 i. Open the command prompt and run the command:

      ```
      C:\HP\UCMDB\UCMDBServer\bin\jre\bin\keytool.exe -export -alias <keystore alias> -keystore <Keystore file path> -file C:\HP\UCMDB\UCMDBServer\conf\security\server.cert
      ```

 where:
Hardening Guide
Chapter 5: Data Flow Probe Hardening

- **keystore alias** is the name given to the keystore.
- **Keystore file path** is the full path of the location of the keystore file.

For example, for the out-of-the-box server.keystore use the following command:

```bash
C:\HP\UCMDB\UCMDBServer\bin\jre\bin\keytool.exe -export -alias hpcert -keystore C:\hp\ucmdb\ucmdbserver\conf\security\server.keystore -file C:\HP\UCMDB\UCMDBServer\conf\security\server.cert
```

ii. Enter the keystore password. For example, the out-of-the-box keystore password is **hppass**.

iii. Verify that the certificate was created in the following directory:

```
C:\HP\UCMDB\UCMDBServer\conf\security\server.cert
```

b. **Harden the Data Flow Probe connector in UCMDB**

i. Access the UCMDB JMX console: In your Web browser, enter the following URL: `https://localhost:8443/jmx-console`. You may have to log in with a user name and password.

ii. Select the service: **Ports Management Services**.

iii. Invoke the **PortsDetails** method, and note the port number for HTTPS with client authentication. (Default: 8444) Ensure that the value in the *Is Enabled* column is **True**.

iv. Return to **Ports Management Services**.

v. To map the Data Flow Probe connector to mutual authentication mode, invoke the **mapComponentToConnectors** method with the following parameters:

- **componentName**: mam-collectors
- **isHTTPSWithClientAuth**: true
- **All other flags**: false

The following message is displayed:

```
Operation succeeded. Component mam-collectors is now mapped to: HTTPS_CLIENT_AUTH ports.
```

Note: If you want to use multiple authentication methods, make sure you check the ports used by each of them and set them to **true** (when mapping both cm and mam-collectors).

vi. Return to **Ports Management Services**.
vii. To map the Confidential Manager connector to mutual authentication mode, invoke the `mapComponentToConnectors` method with the following parameters:

- `componentName`: cm
- `isHTTPSWithClientAuth`: true
- `All other flags`: false

The following message is displayed:

```
Operation succeeded. Component cm is now mapped to: HTTPS_CLIENT_AUTH ports.
```

Note: If you want to use multiple authentication methods, make sure you check the ports used by each of them and set them to true (when mapping both cm and mam-collectors).

c. **Copy the UCMDB certificate to each Probe machine**

Copy the certificate file, `C:\HP\UCMDB\UCMDBServer\conf\security\server.cert`, on the UCMDB Server machine to the following folder on each Data Flow Probe machine:

`C:\HP\UCMDB\DataFlowProbe\conf\security`

3. **Data Flow Probe Configuration**

Note: You must configure each Data Flow Probe machine.

a. **Import the server.cert file, created in step 2.a. Export the UCMDB Certificate, to the Probe's Truststore.**

i. Open the command prompt and execute the following command:

```
C:\HP\UCMDB\DataFlowProbe\bin\jre\bin\keytool.exe -import -v -keystore C:\HP\UCMDB\DataFlowProbe\conf\security\HPProbeTrustStore.jks -file C:\HP\UCMDB\DataFlowProbe\conf\security\server.cert -alias hpcert
```

ii. Enter the keystore password: **logomania**

iii. When asked **Trust this certificate?**, press **y** and then **Enter**.

The following message is displayed:

```
Certificate was added to keystore.
```
b. **Create a new client.keystore file**

i. Open the command prompt and run the command:

```
C:\HP\UCMDB\DataFlowProbe\bin\jre\bin\keytool.exe -genkey -alias <ProbeName> -keyalg RSA -sigalg SHA256withRSA -keysize 2048 -keystore c:\HP\UCMDB\DataFlowProbe\conf\security\client.keystore
```

where **ProbeName** is the unique alias of the Data Flow Probe.

Note: To ensure that this alias is unique, use the Probe Name identifier that was given to the Probe when defining the Probe.

ii. Enter password for the keystore, of at least 6 characters, and make a note of it.

iii. Enter the password again for confirmation.

iv. Press **Enter** after answering each of the following questions:

- **What is your first and last name? [Unknown]:**
- **What is the name of your organizational unit? [Unknown]:**
- **What is the name of your organization? [Unknown]:**
- **What is the name of your City or Locality? [Unknown]:**
- **What is the name of your State or Province? [Unknown]:**
- **What is the two-letter country code for this unit? [Unknown]:**

v. Type **yes** when asked **Is CN=Unknown, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown correct?**

vi. Press **Enter** after answering the following question:

Enter key password for <probekey> (RETURN if same as keystore password):

vii. Verify the file was created in the following folder, and ensure its file size is greater than 0:

```
C:\hp\UCMDB\DataFlowProbe\conf\security\client.keystore
```

c. **Export the new Client Certificate**

i. Open the command prompt and run the command:

```
C:\HP\UCMDB\DataFlowProbe\bin\jre\bin\keytool.exe -export -alias <ProbeName> -keystore C:\hp\UCMDB\DataFlowProbe\conf\security\client.keystore -file C:\hp\UCMDB\DataFlowProbe\conf\security\<ProbeName>.cert
```
ii. When asked, enter the keystore password. (The password from step 3.b.ii above.)

The following message is displayed:

Certificate stored in file
<C:\hp\UCMDB\DataFlowProbe\conf\security\<ProbeName>.cert>

d. Open the DataFlowProbe.properties file located in:
C:\HP\UCMDB\DataFlowProbe\conf\n
i. Update the appllog.agent.probe.protocol property to HTTPS.

ii. Update the serverPortHttps property to the relevant port number. (Use the port number from step 2.b.iii.)

e. Open the ssl.properties file located in: C:\HP\UCMDB\DataFlowProbe\conf\security\n
i. Update the javax.net.ssl.keyStore property to client.keystore.

ii. Encrypt the password from step 3.b.ii above:

A. Start the Data Flow Probe (or make sure it is already running).

B. Access the Probe JMX. On the probe machine, browse to: https://localhost:8453

C. Press the type=MainProbe link.

D. Scroll down to the operation getEncryptedKeyPassword.

E. Enter the password in the Key Password field.

F. Press the getEncryptedKeyPassword button.

iii. Copy and paste the encrypted password to update the javax.net.ssl.keyStorePassword property.

 Note: Numbers are separated by commas. For example: -20,50,34,-40,-50.)

f. Copy the Probe certificate to the UCMDB machine

Copy the file C:\HP\UCMDB\DataFlowProbe\conf\security\<ProbeName>.cert from the Data Flow Probe machine to the UCMDB machine at
C:\HP\UCMDB\UCMDBServer\conf\security\<ProbeName>.cert.

4. Further UCMDB Server Configuration

a. Add each Probe certificate to the Truststore of UCMDB

 Note: You must complete the following steps for each Probe certificate.
i. Open the command prompt and run the command:

```
C:\HP\UCMDB\UCMDBServer\bin\jre\bin\keytool.exe -import -v -keystore C:\hp\UCMDB\UCMDBServer\conf\security\server.truststore -file C:\hp\UCMDB\UCMDBServer\conf\security\<ProbeName>.cert -alias <ProbeName>
```

ii. Enter the keystore password. For example, the out-of-the-box keystore password is `hppass`.

iii. When asked **Trust this certificate?**, press `y` and then `Enter`.

 The following message is displayed:

 Certificate was added to keystore

5. Restart the Machines

 Restart the UCMDB server and the Probe services.

(Optional) Generate the UCMDB Certificate Chain

1. Generate the keystore

 Before starting the following procedure, remove the old `server.keystore` located in the `C:\hp\UCMDB\UCMDBServer\conf\security\server.keystore` directory.

 a. Open the command prompt and run the command:

   ```
   C:\HP\UCMDB\UCMDBServer\bin\jre\bin\keytool -genkey -alias <keystore alias> -keyalg RSA -sigalg SHA256withRSA -keysize 2048 -keystore <Keystore file path>
   ```

 where:

 - **keystore alias** is the name given to the keystore.
 - **Keystore file path** is the full path of the location of the keystore file.

 b. Enter password for the keystore, of at least 6 characters, and make a note of it.

 Enter the keystore password,

 - If the password has changed, run the `changeKeystorePassword` JMX operation, in `UCMDB:service=Security Services`.
 - If the password has not changed, use the default `hppass` password.
c. Enter the password again for confirmation.

d. Press Enter after answering each of the following questions:

- **What is your first and last name?**

 [Unknown]: [Common Name (CN)]

 The CN must be filled out correctly. The CN must be a fully-qualified domain name (FQDN). A single short name such as “sitename” or an IP address will not be accepted.

 Examples of valid FQDNs are:

 - www.sitename.com
 - sitename.com
 - sitename.hp.com
 - sitename.eds.com

- **What is the name of your organizational unit?**

 [Unknown]: [Organizational Unit (OU)]

 Note: This field should NOT reference a company name in any form (for example, HP, Hewlett-Packard, Google, and so on). If your CSR will not allow you to leave this field blank (which is what we recommend), then you should reference some sort of department (for example, Online, Accounting, Finance, and so on). If this field is filled out incorrectly, it can cause your enrollment to fail!

- **What is the name of your organization?**

 [Unknown]: [Organization (O)]

 Enter the name of your organization, for example, **Hewlett-Packard**.

- **What is the name of your City or Locality?**

 [Unknown]: [City / Locality (L)]

 Enter the City or Locality of the server on which the SSL certificate will reside. This field CANNOT be blank.

- **What is the name of your State or Province?**

 [Unknown]: [State / Province (S)]

 Enter the State/Province of the server on which the SSL certificate will reside. The State/Province must be spelled out in its entirety (more than two characters) and cannot be abbreviated (for example, enter **Colorado**, not **CO**). This field CANNOT be blank.
What is the two-letter country code for this unit?

[Unknown]: [Country (C)]

Enter the Country of the server on which the SSL certificate will reside. You must enter the two-character ISO 3166 Country Code. This field CANNOT be blank.

e. Type y when asked Is CN=[XXX], OU=[XXXX], O=[XXXX], L=[XXXX], ST=[XXXX], C=[XXX] correct?

f. Press Enter after answering the following questions:

Enter key password for <serverkey> (RETURN if same as keystore password):

Re-enter new password:

g. Verify the file was created in the following folder, and ensure its file size is greater than 0:

C:\hp\UCMDB\UCMDBServer\conf\security\server.keystore.

2. Generate the CSR

Run the following command to generate the CSR:

c:\HP\UCMDB\UCMDBServer\bin\jre\bin\keytool -certreq -alias server -file c:\HP\UCMDB\UCMDBServer\conf\security\certreq.csr -keystore c:\HP\UCMDB\UCMDBServer\conf\security\server.keystore -sigalg SHA256withRSA

3. Obtain the server private certification

a. Download the CA root cert first, and install it as Trusted Root Certification Authorities.

b. Modify the suffix into .cer or .crt.

c. Put the certification file in the following directory:

C:\HP\UCMDB\UCMDBServer\conf\security\serverserver.cer.

4. Generate the certificate chain

a. Import Root certificates to the keystore using the following command:

c:\HP\UCMDB\UCMDBServer\bin\jre\bin\keytool -import -v -trustcacerts -alias root -keystore c:\HP\UCMDB\UCMDBServer\conf\security\server.keystore -file c:\HP\UCMDB\UCMDBServer\conf\security\server.cer

b. Import Server certificate to the keystore using the following command:
c:\HP\UCMDB\UCMDBServer\bin\jre\bin\keytool -import -v -trustcacerts -alias server -keystore c:\HP\UCMDB\UCMDBServer\conf\security\server.keystore
C:\HP\UCMDB\UCMDBServer\conf\security\server.cer

Note: The alias name must equal to the alias name when you generate the keystore, and the importing order cannot be changed.

c. The certificate chain is generated.

Use the following command to view the details of the keystore:

C:\HP\UCMDB\UCMDBServer\bin\jre\bin\keytool.exe -list -v -keystore C:\hp\UCMDB\UCMDBServer\conf\security\server.keystore

Note: To generate the probe certificate chain, repeat the above steps. The only difference is to name the alias name as "client" and generate the `client.keystore` and `client.cer` files.

How to Change the aioptionrc File Permission for Agents or Scanners

The `.discagent/aioptionrc` file is world writable and its default permission is set to 666. If users use the `-home` option (for agent installation and scanner) to set the `aioptionrc` file path to a certain fixed directory, this file's default permission allows different users to run the inventory job automatically (`sudo` configured) or run the scanner manually.

To change the `aioptionrc` file permission for agents or scanners, do the following:

1. Open the Post-Scan Script Editor.

 For details on how to access the Post-Scan Script Editor, see Pre/Post-Scan Script Editor in *HPE Universal CMDB Data Flow Management Guide*.

2. Add the `chmod o-w .aioptionrc` command to the scanner's post script for UNIX operating system.

 For details on how to edit the post scan scripts, see How to Edit Pre-/Post-Scan Scripts in *HPE Universal CMDB Data Flow Management Guide*.

3. Results

 The file permission is changed, and the first user who installs the agent or runs the scanner is the
Encrypt the Probe Keystore and Truststore Passwords

The Probe keystore and truststore passwords are stored encrypted in
C:\HP\UCMDB\DataFlowProbe\conf\security\ssl.properties. This procedure explains how to encrypt the password.

1. Start Data Flow Probe (or verify that it is already running).
2. Access the Data Flow Probe JMX console: On the probe machine, launch a Web browser and enter the following address: https://localhost:8453.

 Note: You may have to log in with a user name and password. If you have not created a user, use the default user name sysadmin and the password to log in.

3. Locate the Type=MainProbe service and click the link to open the Operations page.
4. Locate the getEncryptedKeyPassword operation.
5. Enter your keystore or truststore password in the Key Password field and invoke the operation by clicking getEncryptedKeyPassword.
6. The result of the invocation is an encrypted password string, for example:

7. Copy and paste the encrypted password into the line relevant to either the keystore or the truststore in the following file: C:\HP\UCMDB\DataFlowProbe\conf\security\ssl.properties.

Server and Data Flow Probe Default Keystore and Truststore

This section includes the following topics:

- "UCMDB Server" on the next page
- "Data Flow Probe" on the next page
UCMDB Server

The files are located in the following directory: \C:\HP\UCMDB\UCMDBServer\conf\security.

<table>
<thead>
<tr>
<th>Entity</th>
<th>File Name/Term</th>
<th>Password/Term</th>
<th>Alias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server keystore</td>
<td>server.keystore</td>
<td>hppass</td>
<td>hpcert</td>
</tr>
<tr>
<td></td>
<td>(sKeyStoreFile)</td>
<td>(sKeyStorePass)</td>
<td></td>
</tr>
<tr>
<td>Server truststore</td>
<td>server.truststore</td>
<td>hppass</td>
<td>hpcert (default trusted entry)</td>
</tr>
<tr>
<td></td>
<td>(sTrustStoreFile)</td>
<td>(sTrustStorePass)</td>
<td></td>
</tr>
<tr>
<td>Client keystore</td>
<td>client.keystore</td>
<td>clientpass</td>
<td>clientcert</td>
</tr>
<tr>
<td></td>
<td>(cKeyStoreFile)</td>
<td>(cKeyStorePass)</td>
<td></td>
</tr>
</tbody>
</table>

Data Flow Probe

The files are located in the following directory: \C:\HP\UCMDB\DataFlowProbe\conf\security.

<table>
<thead>
<tr>
<th>Entity</th>
<th>File Name/Term</th>
<th>Password/Term</th>
<th>Alias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe keystore</td>
<td>hpprobeKeyStore.jks</td>
<td>logomania</td>
<td>hpprobe</td>
</tr>
<tr>
<td></td>
<td>(pKeyStoreFile)</td>
<td>(pKeyStorePass)</td>
<td></td>
</tr>
</tbody>
</table>

Note: In FIPS mode, the file name is FIPS_hpprobeKeyStore.jks

Data Flow Probe uses the **cKeyStoreFile** keystore as the default keystore during the mutual authentication procedure. This is a client keystore that is part of the UCMDB installation.

<table>
<thead>
<tr>
<th>Entity</th>
<th>File Name/Term</th>
<th>Password/Term</th>
<th>Alias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe truststore</td>
<td>HPProbeTrustStore.jks</td>
<td>logomania</td>
<td>hpprobe (default trusted entry)</td>
</tr>
<tr>
<td></td>
<td>(pTrustStoreFile)</td>
<td>(pTrustStorePass)</td>
<td></td>
</tr>
</tbody>
</table>

Note: In FIPS mode, the file name is FIPS_HPProbeTrustStore.jks

The **cKeyStorePass** password is the default password of **cKeyStoreFile**.
How to Change the aioptionrc File Permission for Agents or Scanners

The /.discagent/aioptionrc file is world writable and its default permission is set to 666. If users use the –home option (for agent installation and scanner) to set the aioptionrc file path to a certain fixed directory, this file’s default permission allows different users to run the inventory job automatically (sudo configured) or run the scanner manually.

To change the aioptionrc file permission for agents or scanners, do the following:

1. Open the Post-Scan Script Editor.

 For details on how to access the Post-Scan Script Editor, see Pre/Post-Scan Script Editor in HPE Universal CMDB Data Flow Management Guide.

2. Add the chmod o-w /aioptionrc command to the scanner’s post script for UNIX operating system.

 For details on how to edit the post scan scripts, see How to Edit Pre-/Post-Scan Scripts in HPE Universal CMDB Data Flow Management Guide.

3. Results

 The file permission is changed, and the first user who installs the agent or runs the scanner is the only user.

 Note: The owners and users in the same group have the same write permission for the file.

Create a Keystore for the Data Flow Probe

1. On the Probe machine, run the following command:

   ```shell
   c:\HP\UCMDB\DataFlowProbe\bin\jre\bin\keytool -genkey -alias <ProbeName> -keyalg RSA -sigalg SHA256withRSA -keysize 2048 -keystore c:\HP\UCMDB\DataFlowProbe\conf\security\client.keystore
   ```

 Note: In FIPS mode, run the following command:

   ```shell
   c:\HP\UCMDB\UCMDBServer\bin\jre\bin\keytool.exe -genkey -keyalg rsa -
2. Enter a password for the new keystore.

3. Enter your information when asked.

4. When asked Is CN=... C=... Correct? enter yes, and press Enter.

5. Press Enter again to accept the keystore password as the key password.

6. Verify that client.keystore is created in the following directory:
   C:\HP\UCMDB\DataFlowProbe\conf\security\.

Set Master Key for Password Encryption on Data Flow Probe

This section explains how to set a master key for password encryption on Data Flow Probe. This key is updated with a new pass. The updated pass is stored in the DataFlowProbe.properties file.

To set the master key for password encryption on Data Flow Probe,

1. Access the Data Flow Probe JMX console. On the probe machine, launch a Web browser and enter the following address: https://localhost:8453.

   You may have to log in with a user name and password.

   **Note:** If you have not created a user, use the default user name sysadmin to log in.

2. Locate the type=MainProbe service and click the link to open the Operations page.

3. Locate the changeMasterKey operation.

4. In the pass field, enter the new pass to change master key.

5. In the repass field, enter the new pass again to double confirm.

6. Click Invoke.

   The result of the invocation is a message like the following:

   The key is changed successfully.

   **Note:** For Data Flow Probes installed in separate mode, you need to change the master key on both probe gateway and probe manager.
Enable Secure Communication between Universal Discovery Agents and Data Flow Probes Using CA-Signed Certificates

**Note:**
- Supported on non-FIPS environment only.
- Only support OpenSSL version 0.9.8 for key generation.

1. **Prerequisites**
   - Check and make sure that the Root CA and Intermediate CA(s) certificates for your organization are ready.
   - Check and make sure that your CA certificates are not expired. When the certificates are expired, the connection with the Universal Discovery Agent will be broken. When you start using CA-signed certificates, the valid period of the certificates is not decided by UCMDB or DDMI anymore, but the security system of yours.
   - Note that Data Flow Probes and Universal Discovery Agents require the same CA certificate chain (Root CA, intermediate CA(s), ...).

2. **Prepare the keystore.bin file**
   a. **Prepare CA-signed certificates for the Data Flow Probe**
      i. Generate your probe keystore (in this example, `client.keystore.bin`) with a key pair (probe public/private keys) using keytool.
         
         Run the following command:
         ```
 <UCMDB_Server_Home>/bin/jre/bin/keytool -keystore client.keystore.bin -genkey -alias "ACS server" -keyalg RSA -keysize 2048 -storepass aspasswd -keypass aspasswd -noprompt
         ```
         **Note:** Make sure you use exactly the same bold values as highlighted above.
      ii. Generate the Certificate Signing Request (CSR) based on the probe public key by running the following command:
         ```
 <UCMDB_Server_Home>/bin/jre/bin/keytool -keystore client.keystore.bin -genkey -certreq -alias "ACS server" -keyalg RSA
         ```
iii. Generate a CA signed probe public key certificate for the CSR by following your organization's security guidelines.

**Note:** Make sure you use exactly the same bold values as highlighted above.

b. **Configure the probe keystore**

i. Import the Root CA cert and the Intermediate CA cert(s) into the probe keystore.

Run the following commands:

```bash
<UCMDB_Server_Home>/bin/jre/bin/keytool -import -keystore client.keystore.bin -file <Root CA .cer file> -alias rootCA -storepass acspass -noprompt
<UCMDB_Server_Home>/bin/jre/bin/keytool -import -keystore client.keystore.bin -file <Intermediate CA .cer file> -alias intermediateCA -storepass acspass -noprompt
```

**Note:** This step depends on the CA cert chain. You need to import all the Intermediate CA certs in the cert chain.

i. Update the probe keystore with the content of the CA signed probe public key certificate you obtained in step 2.a.iii.

   A. Change the probe keystore type from **JKS** to **PKCS12** by running the following command:

```bash
<UCMDB_Server_Home>/bin/jre/bin/keytool -importkeystore -srckeystore client.keystore.bin -destkeystore tmp.p12 -srcstoretype JKS -deststoretype PKCS12 -srcalias "ACS server"
```

   B. Convert the PKCS12 probe keystore file to an editable pem file by running the following command:

```bash
Openssl pkcs12 -in tmp.p12 -out tem.pem
```

   C. Open the **tem.pem** file in a text editor.
D. Replace the entire CERTIFICATE section of the tem.pem file with the content of the CA signed certificate you obtained in step 2.a.iii, and then save the file.

E. Convert the updated pem file back to **PKCS12** type keystore file by running the following command:

```
openssl pkcs12 -export -in tem.pem -out tem.p12
```

F. Import the updated **PKCS12** type file back into the probe keystore by running the following command:

```
<UCMDB_Server_Home>/bin/jre/bin/keytool -importkeystore -destkeystore client.keystore.bin -srckeystore tem.p12 -srcstoretype PKCS12
```

ii. Delete the old probe key pair by removing the **ACS server** entry from the probe keystore file.

Run the following command:

```
<UCMDB_Server_Home>/bin/jre/bin/keytool -delete -alias "ACS server" -keystore client.keystore.bin
```

iii. Change probe keystore alias from 1 (or any other existing alias) to **ACS server** by running the following command:

```
<UCMDB_Server_Home>/bin/jre/bin/keytool -changealias -keystore client.keystore.bin -alias 1 -destalias "ACS server"
```

c. **Generate and import the Universal Discovery Agent keystore into the probe keystore**

i. Generate the Universal Discovery Agent keystore with a key pair (agent public/private keys) by running the following command:

```
<UCMDB_Server_Home>/bin/jre/bin/keytool -keystore agent.keystore -genkey -alias mykey -keyalg RSA -keysize 2048 -storepass agentpass -keypass agentpass -noprompt
```

| Note: Make sure you use exactly the same bold values as highlighted above. |

ii. Generate the Certificate Signing Request (CSR) based on the agent public key.

Run the following command:

```
<UCMDB_Server_Home>/bin/jre/bin/keytool -keystore agent.keystore -


```bash
genkey -certreq -alias mykey -keyalg RSA -keysize 2048 -file agent.csr -storepass agentpass -noprompt
```

iii. Generate a CA-signed agent public key certificate for the CSR by following your organization's security guidelines.

d. **Import the CA-signed agent public key to probe keystore**

```
<UCMDB_Server_Home>/bin/jre/bin/keytool -import -keystore client.keystore.bin -file <cert.cer>.txt -alias mykey -storepass acspass -noprompt
```

where `<cert.cer>.txt` file name should be the CA signed certificate file you obtained in step 2.c.iii.

| Note: Make sure you use exactly the same bold values as highlighted above.

3. **Prepare the agent.pem file**

a. Convert the agent keystore into a pem file (`agent.pem`) by running the following command:

```
<UCMDB_Server_Home>/bin/jre/bin/keytool -importkeystore -srckeystore agent.keystore -destkeystore agent.p12 -srcstoretype JKS -deststoretype PKCS12 -srcalias mykey

openssl pkcs12 -in agent.p12 -out agent.pem
```

b. Replace the CERTIFICATE section in `agent.pem` with the content of the CA-signed agent public key certificate you obtained in step 2.c.iii.

4. **Prepare the probe.cert file**

a. Create a new text file.

b. Copy and paste the entire content of the following three files into the text file:

- The Root CA cert
- All the Intermediate CA cert(s) in the cert chain
- The `client.csr` file you obtained in step 2.a.ii

c. Rename the text file to `probe.cert`.

5. **Import the CA signed certificates you prepared in steps above (client.keystore.bin, agent.pem, and probe.cert) into UCMDB**

a. Log in to UCMDB, and in UCMDB UI, go to **Data Flow Management > Data Flow Probe Setup > Domains and Probes** pane > Domains and Probes root node > DefaultDomain
(Default) > Credentials > Universal Discovery Protocol.

b. In the right-hand Universal Discovery Protocol pane, click Import DDMI certificates.

The Universal Discovery Protocol Parameters dialog box opens.

c. Click for the Agent Certificate/Key File field, select the agent.pem file, and click Open to load the file.

d. Click for the Probe Certificate File field, select the probe.cert file, and click Open to load the file.

e. Click for the Key Store File field, select the keystore.bin file, and click Open to load the file.

f. Leave other fields as is and click OK.

6. Run install UD Agent job and check job status

a. In UCMDB UI, go to Data Flow Management > Universal Discovery > Discovery Modules/Jobs > Discovery Modules > Tools and Samples > UD Agent Management.

b. Select the Install UD Agent job, and then click the Activate Selected Discovery Jobs button to run the job.

c. Check if the Install UD Agent job is completed successfully.

If yes, it indicates that the Universal Discovery Agents can communicate with Data Flow Probes properly using the new CA-signed certificates.

7. Run discovery jobs using the Universal Discovery Protocol.
Chapter 6: Lightweight Single Sign-on (LW-SSO) Authentication

This chapter includes:

- LW-SSO Authentication Overview ...118
- LW-SSO System Requirements ...119
- LW-SSO Security Warnings ...120
- Troubleshooting and Limitations - LW-SSO Authentication121
- Known Issues ...121
- Limitations ...122

LW-SSO Authentication Overview

LW-SSO is a method of access control that enables a user to log on once and gain access to the resources of multiple software systems without being prompted to log on again. The applications inside the configured group of software systems trust the authentication, and there is no need for further authentication when moving from one application to another.

The information in this section applies to LW-SSO version 2.2 and 2.3.

- **LW-SSO Token Expiration**

The LW-SSO Token's expiration value determines the application's session validity. Therefore, its expiration value should be at least the same value as that of the application session expiration value.

- **Recommended Configuration of the LW-SSO Token Expiration**

 Each application using LW-SSO should configure token expiration. The recommended value is 60 minutes. For an application that does not require a high level of security, it is possible to configure a value of 300 minutes.

- **GMT Time**

 All applications participating in an LW-SSO integration must use the same GMT time with a maximum difference of 15 minutes.
- **Multi-domain Functionality**

 Multi-domain functionality requires that all applications participating in LW-SSO integration configure the trustedHosts settings (or the `protectedDomains` settings), if they are required to integrate with applications in different DNS domains. In addition, they must also add the correct domain in the `lwsso` element of the configuration.

- **Get SecurityToken for URL Functionality**

 To receive information sent as a `SecurityToken for URL` from other applications, the host application should configure the correct domain in the `lwsso` element of the configuration.

LW-SSO System Requirements

<table>
<thead>
<tr>
<th>Application</th>
<th>Version</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Java</td>
<td>1.5 and later</td>
<td></td>
</tr>
<tr>
<td>HTTP Servlets API</td>
<td>2.1 and later</td>
<td></td>
</tr>
<tr>
<td>Internet Explorer</td>
<td>6.0 and later</td>
<td>Browser should enable HTTP session cookie and HTTP 302 Redirect functionality.</td>
</tr>
<tr>
<td>Firefox</td>
<td>2.0 and later</td>
<td>Browser should enable HTTP session cookie and HTTP 302 Redirect functionality.</td>
</tr>
<tr>
<td>JBoss Authentications</td>
<td>JBoss 4.0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JBoss 4.3.0</td>
<td></td>
</tr>
<tr>
<td>Tomcat Authentications</td>
<td>Standalone Tomcat 5.0.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standalone Tomcat 5.5.20</td>
<td></td>
</tr>
<tr>
<td>Acegi Authentications</td>
<td>Acegi 0.9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acegi 1.0.4</td>
<td></td>
</tr>
<tr>
<td>Web Services Engines</td>
<td>Axis 1 - 1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Axis 2 - 1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAX-WS-RI 2.1.1</td>
<td></td>
</tr>
</tbody>
</table>
LW-SSO Security Warnings

This section describes security warnings that are relevant to the LW-SSO configuration:

- **Confidential InitString parameter in LW-SSO.** LW-SSO uses Symmetric Encryption to validate and create a LW-SSO token. The initString parameter within the configuration is used for initialization of the secret key. An application creates a token, and each application using the same initString parameter validates the token.

 Caution:
 - It is not possible to use LW-SSO without setting the initString parameter.
 - The initString parameter is confidential information and should be treated as such in terms of publishing, transporting, and persistency.
 - The initString parameter should be shared only between applications integrating with each other using LW-SSO.
 - The initString parameter should have a minimum length of 12 characters.

- **Enable LW-SSO only if required.** LW-SSO should be disabled unless it is specifically required.

- **Level of authentication security.** The application that uses the weakest authentication framework and issues a LW-SSO token that is trusted by other integrated applications determines the level of authentication security for all the applications.

 It is recommended that only applications using strong and secure authentication frameworks issue an LW-SSO token.

- **Symmetric encryption implications.** LW-SSO uses symmetric cryptography for issuing and validating LW-SSO tokens. Therefore, any application using LW-SSO can issue a token to be trusted by all other applications sharing the same initString parameter. This potential risk is relevant when an application sharing an initString either resides on, or is accessible from, an untrustworthy location.

- **User mapping (Synchronization).** The LW-SSO framework does not ensure user mapping between the integrated applications. Therefore, the integrated application must monitor user mapping. We recommend that you share the same user registry (as LDAP/AD) among all integrated applications.

 Failure to map users may cause security breaches and negative application behavior. For example, the same user name may be assigned to different real users in the various applications.
In addition, in cases where a user logs onto an application (AppA) and then accesses a second application (AppB) that uses container or application authentication, the failure to map the user will force the user to manually log on to AppB and enter a user name. If the user enters a different user name than was used to log on to AppA, the following behavior can arise: If the user subsequently accesses a third application (AppC) from AppA or AppB, then they will access it using the user names that were used to log on to AppA or AppB respectively.

- **Identity Manager.** Used for authentication purposes, all unprotected resources in the Identity Manager must be configured with the `nonsecureURLs` setting in the LW-SSO configuration file.

- **LW-SSO Demo mode.**
 - The Demo mode should be used for demonstrative purposes only.
 - The Demo mode should be used in unsecured networks only.
 - The Demo mode must not be used in production. Any combination of the Demo mode with the production mode should not be used.

Troubleshooting and Limitations - LW-SSO Authentication

This section describes known issues and limitations when working with LW-SSO authentication.

Known Issues

This section describes known issues for LW-SSO authentication.

- **Security context.** The LW-SSO security context supports only one attribute value per attribute name.

 Therefore, when the SAML2 token sends more than one value for the same attribute name, only one value is accepted by the LW-SSO framework.

 Similarly, if the IdM token is configured to send more than one value for the same attribute name, only one value is accepted by the LW-SSO framework.

- **Multi-domain logout functionality when using Internet Explorer 7.** Multi-domain logout functionality may fail under the following conditions:

 - The browser used is Internet Explorer 7 and the application is invoking more than three consecutive HTTP 302 redirect verbs in the logout procedure.

 In this case, Internet Explorer 7 may mishandle the HTTP 302 redirect response and display an **Internet Explorer cannot display the webpage** error page instead.

 As a workaround, it is recommended to reduce, if possible, the number of application redirect commands in the logout sequence.
Limitations

Note the following limitations when working with LW-SSO authentication:

- **Client access to the application.**

 If a domain is defined in the LW-SSO configuration:

 - The application clients must access the application with a Fully Qualified Domain Name (FQDN) in the login URL, for example, http://myserver.companydomain.com/WebApp.

 Note: The length of the FQDN cannot be longer than the value of the Maximum domain extension length setting in the Infrastructure Settings Manager. The default value is 8.

 - LW-SSO cannot support URLs without a domain, for example, http://myserver/WebApp.

 If a domain is not defined in the LW-SSO configuration: The client can access the application without a FQDN in the login URL. In this case, a LW-SSO session cookie is created specifically for a single machine without any domain information. Therefore, the cookie is not delegated by the browser to another, and does not pass to other computers located in the same DNS domain. This means that LW-SSO does not work in the same domain.

- **LW-SSO framework integration.** Applications can leverage and use LW-SSO capabilities only if integrated within the LW-SSO framework in advance.

- **Multi-Domain Support.**

 - Multi-domain functionality is based on the HTTP referrer. Therefore, LW-SSO supports links from one application to another and does not support typing a URL into a browser window, except when both applications are in the same domain.

 - The first cross domain link using HTTP POST is not supported.

 Multi domain functionality does not support the first HTTP POST request to a second application (only the HTTP GET request is supported). For example, if your application has an HTTP link to a second application, an HTTP GET request is supported, but an HTTP FORM request is not supported. All requests after the first can be either HTTP POST or HTTP GET.

 - LW-SSO Token size:

 The size of information that LW-SSO can transfer from one application in one domain to another application in another domain is limited to 15 Groups/Roles/Attributes (note that each item may be an average of 15 characters long).
○ Linking from Protected (HTTPS) to non-protected (HTTP) in a multi-domain scenario:

Multi domain functionality does not work when linking from a protected (HTTPS) to a non-protected (HTTP) page. This is a browser limitation where the referrer header is not sent when linking from a protected to a non-protected resource. For an example, see: http://support.microsoft.com/support/kb/articles/Q178/0/66.ASP

○ Third-Party cookie behavior in Internet Explorer:

Microsoft Internet Explorer 6 contains a module that supports the "Platform for Privacy Preferences (P3P) Project," meaning that cookies coming from a Third Party domain are blocked by default in the Internet security zone. Session cookies are also considered Third Party cookies by IE, and therefore are blocked, causing LW-SSO to stop working. For details, see: http://support.microsoft.com/kb/323752/en-us.

To solve this issue, add the launched application (or a DNS domain subset as *.mydomain.com) to the Intranet/Trusted zone on your computer (in Microsoft Internet Explorer, select Menu > Tools > Internet Options > Security > Local intranet > Sites > Advanced), which causes the cookies to be accepted.

 ⚠️ Caution: The LW-SSO session cookie is only one of the cookies used by the Third Party application that is blocked.

● **SAML2 token**

 ○ Logout functionality is not supported when the SAML2 token is used.

 Therefore, if the SAML2 token is used to access a second application, a user who logs out of the first application is not logged out of the second application.

 ○ **The SAML2 token's expiration is not reflected in the application's session management.**

 Therefore, if the SAML2 token is used to access a second application, each application's session management is handled independently.

● **JAAS Realm.** The JAAS Realm in Tomcat is not supported.

● **Using spaces in Tomcat directories.** Using spaces in Tomcat directories is not supported.

 It is not possible to use LW-SSO when a Tomcat installation path (folders) includes spaces (for example, Program Files) and the LW-SSO configuration file is located in the common\classes Tomcat folder.

● **Load balancer configuration.** A load balancer deployed with LW-SSO must be configured to use sticky sessions.

● **Demo mode.** In Demo mode, LW-SSO supports links from one application to another but does not support typing a URL into a browser window, due to an HTTP referrer header absence in this case.
Chapter 7: HPE Universal CMDB Login Authentication

This chapter includes:

- Setting Up an Authentication Method .. 124
- Enabling Login to HPE Universal CMDB with LW-SSO 125
- Setting a Secure Connection with the SSL (Secure Sockets Layer) Protocol 126
- Using the JMX Console to Test LDAP Connections .. 127
- How to Enable HTTP Communication for HPE Universal CMDB 127
- Hybrid User Management with Multiple User Repositories 128
- How to Define LDAP Servers and Enable LDAP Authentication Method 129
- LDAP Authentication Settings - Example .. 132
- Retrieving Current LW-SSO Configuration in Distributed Environment 133
- User Lockout Mechanism ... 133

Setting Up an Authentication Method

To perform authentication, you can work:

- **Against the internal HP Universal CMDB service.**

- **Through the Lightweight Directory Access Protocol (LDAP).** You can use a dedicated, external LDAP server to store the authentication information instead of using the internal HP Universal CMDB service. The LDAP server must reside on the same subnet as all the HP Universal CMDB servers.

 For details on LDAP, see the section about LDAP Mapping in the *HPE Universal CMDB Administration Guide*.

 The default authentication method uses the internal HP Universal CMDB service. If you use the default method, you do not have to make any changes to the system.

 These options apply to logins performed through Web services as well as through the user interface.

- **Through LW-SSO.** HP Universal CMDB is configured with LW-SSO. LW-SSO enables you to log in to HP Universal CMDB and automatically have access to other configured applications running
on the same domain, without needing to log in to those applications.

When LW-SSO Authentication Support is enabled (it is disabled by default), you must ensure that the other applications in the Single Sign-On environment have LW-SSO enabled and are working with the same initString parameter.

Enabling Login to HPE Universal CMDB with LW-SSO

1. Access the JMX console by entering the following address into your Web browser:

 https://<server_name>:8443/jmx-console, where <server_name> is the name of the machine on which HP Universal CMDB is installed.

2. Under UCMDB-UI, click the name=LW-SSO Configuration to open the Operations page.

3. Set the init string using the setInitString method.

4. Set the domain name of the machine on which UCMDB is installed using the setDomain method.

5. Invoke the method setEnabledForUI with the parameter set to True.

6. Optional. If you want to work using multi-domain functionality, select the addTrustedDomains method, enter the domain values and click Invoke.

7. Optional. If you want to work using a reverse proxy, select the updateReverseProxy method, set the Is reverse proxy enabled parameter to True, enter a URL for the Reverse proxy full server URL parameter, and click Invoke. If you want to access UCMDB both directly and using a reverse proxy, set the following additional configuration: select the setReverseProxyIPs method, enter the IP address for the Reverse proxy ip/s parameter and click Invoke.

8. Optional. If you want to access UCMDB using an external authentication point, select the setValidationPointHandlerEnable method, set the Is validation point handler enabled parameter to True, enter the URL for the authentication point in the Authentication point server parameter, and click Invoke.

9. To view the LW-SSO configuration as it is saved in the settings mechanism, invoke the retrieveConfigurationFromSettings method.

10. To view the actual loaded LW-SSO configuration, invoke the retrieveConfiguration method.

| Note: | You cannot enable LW-SSO via the user interface. |
Setting a Secure Connection with the SSL (Secure Sockets Layer) Protocol

Since the login process involves the passing of confidential information between HP Universal CMDB and the LDAP server, you can apply a certain level of security to the content. You do this by enabling SSL communication on the LDAP server and configuring HP Universal CMDB to work using SSL.

HP Universal CMDB supports SSL that uses a certificate issued by a trusted Certification Authority (CA).

Most LDAP servers, including Active Directory, can expose a secure port for an SSL based connection. If you are using Active Directory with a private CA, you must add your CA to the trusted CAs in the JRE.

For details on configuring the HP Universal CMDB platform to support communication using SSL, see "Enabling Secure Sockets Layer (SSL) Communication" on page 20.

To add a CA to trusted CAs to expose a secure port for an SSL based connection:

1. Export a certificate from your CA and import it into the JVM that is used by HP Universal CMDB, using the following steps:
 a. On the UCMDB Server machine, access the UCMDBServer\bin\JRE\bin folder.
 b. Run the following command:
      ```
      Keytool -import -file <your certificate file> -keystore C:\hp\UCMDB\UCMDBServer\bin\JRE\lib\security\cacerts
      ```
 For example:
      ```
      Keytool -import -file c:\ca2ss_ie.cer -keystore C:\hp\UCMDB\UCMDBServer\bin\JRE\lib\security\cacerts
      ```
 2. a. Go to JMX console UCMDB:service=LDAP Services > configureLDAPServer method.
 b. Enter the value for the ldapURL setting using the format:
      ```
      ldaps://<ldapHost>[:<port>]/[<baseDN>][?scope]
      ```
 For example:
      ```
      ldaps://my.ldap.server:389/ou=People,o=myOrg.com??sub/
      ```
 Note the s in ldaps.
 c. Enter the values for the other relevant settings and click Invoke.

 Note: If you already configured an LDAP server, you have to delete it and then reconfigure it using the above step.
Using the JMX Console to Test LDAP Connections

This section describes a method of testing the LDAP authentication configuration using the JMX console.

1. Launch your Web browser and enter the following address: https://<server_name>:8443/jmx-console, where <server_name> is the name of the machine on which HP Universal CMDB is installed.
 You may need to log in with a user name and password.
2. Under UCMDB, click UCMDB:service=LDAP Services to open the Operations page.
3. Locate testLDAPConnection.
4. Enter the customer ID in the customer id value box.
5. In the Value box for the ldapHost parameter, enter the ldap host.
6. Click Invoke.
 The JMX MBEAN Operation Result page indicates whether the LDAP connection is successful. If the connection is successful, the page also shows the LDAP root groups.

How to Enable HTTP Communication for HPE Universal CMDB

Starting from version 10.30, by default the HTTPS protocol is enabled for UCMDB server, with the HTTP protocol being disabled.

However, you can enable HTTP communication for UCMDB server when necessary. To do so,

1. Open the c:\hp\UCMDB\UCMDBServer\conf\settings.override.properties file using a text editor.
2. Add the following line into the file:
   ```
   jetty.connections.http.enabled=true
   ```
3. Save the file.
4. Restart the UCMDB server.
5. In the Web browser, enter the URL of the HPE Universal CMDB Server with HTTP protocol and port 8080, for example:

 http://<server name or IP address>.<domain name>:8080

 where <server name or IP address>.<domain name> represents the fully qualified domain name (FQDN) of the HPE Universal CMDB Server.

Hybrid User Management with Multiple User Repositories

Starting from version 10.31, when you have LDAP server(s) configured, you can also authenticate with UCMDB users. This allows you to perform hybrid user management with multiple user repositories.

Note: It is very important to have the UCMDB server connection to LDAP server(s) up and running when the upgrade is running.

Now a UCMDB user has an ID composed of name and repository. For example, if you have the user admin from UCMDB, and you log in with a user named admin from the LDAP server Repository1, unlike before that the UCMDB user admin would be deleted and the Repository1 user would replace the old administrator, you will now have 2 users like the following:

...
+xmlUserId xmlUserName="admin" xmlUserRepository="UCMDB"/>
...
+xmlUserId xmlUserName="admin" xmlUserRepository="Repository1"/>
...

On UCMDB UI, when an user is created, it will always be from the UCMDB repository.

When you configure an LDAP server, a drop-down appears at the login page, which also contains UCMDB as an option. Choosing this option allows you to log in with any UCMDB user.

When you try to authenticate with system administrators, it will not work if you do not choose UCMDB from the drop-down.

For information about how to configure LDAP authentication settings, see "How to Define LDAP Servers and Enable LDAP Authentication Method" on the next page.

Caution: You cannot disable the hybrid user management feature. This feature is enabled once you have LDAP server(s) configured.
How to Define LDAP Servers and Enable LDAP Authentication Method

Starting from version 10.30,

- A new setting `deleteLdapServer` is available, which allows you to delete an LDAP Server.
- The following methods are now global and have impact on all the UCMDB servers and LDAP servers: `allowLdapAuthentication`, `allowLdapSynchronization`, and `forceCaseMatchAuthentication`.
- All the other methods were updated and now have a new field named `ldapHost`.

Important: If you are configuring LDAP on a high availability environment, you must restart the cluster for the changes to take effect.

The following describes how to configure single or multiple LDAP authentication settings using the JMX console.

Note:

- In a high availability environment, make sure you log in to the JMX console of the Writer server.
- For an example of LDAP authentication settings, see "LDAP Authentication Settings - Example" on page 132.
- Every LDAP user has a first name, last name, and email address saved in the local repository. If the value of any of these parameters that is stored on the LDAP server differs from the value in the local repository, the LDAP server values will overwrite the local values at each login.
- The value of the `userUID` setting must be unique across all LDAP servers.

How to view the current LDAP authentication settings

1. On the UCMDB server machine, launch your Web browser and enter the following address: `https://localhost:8443/jmx-console`. You may need to log in with a user name and password.
2. Under UCMDB, click `UCMDB:service=LDAP Services` to open the Operations page.
3. To view the current LDAP authentication settings, locate the `getLDAPSettings` method.
4. Click **Invoke**.

A table displays all the LDAP settings and their values.

Note: If you need to view the LDAP settings and their values for only one LDAP server, enter the LDAP server in the `ldapHost` field, and then click **Invoke**.

How to configure a new LDAP server

1. On the UCMDB server machine, launch your Web browser and enter the following address:

 `https://localhost:8443/jmx-console`

 You may need to log in with a user name and password.

2. Under **UCMDB**, click **UCMDB:service=LDAP Services** to open the Operations page.

3. To configure a new LDAP server, locate the `configureLDAPServer` method.

4. Enter the values for the relevant settings and click **Invoke**

Note:

- You can specify the order in which the LDAP servers are presented in UCMDB or in JMX after invoking the `getLDAPSettings` method, by entering a value in the `Priority` field. If two or more LDAP Server have the same priority, the order in which they are presented is alphabetic.

- If you want to view the group information of LDAP users, set the `displayUsersGroup` parameter to **True**, and then invoke the `getLDAPGroupUsersChunk()` method. For details, see the "Search LDAP Users" section in the *HPE Universal CMDB Administration Guide*.

How to change the values of LDAP authentication settings

1. On the UCMDB server machine, launch your Web browser and enter the following address:

 `https://localhost:8443/jmx-console`

 You may need to log in with a user name and password.

2. Under **UCMDB**, click **UCMDB:service=LDAP Services** to open the Operations page.

3. To change the values of LDAP authentication settings, locate the `configureLDAPServer` method.

4. Enter the value for the `ldapURL` and the values for the relevant settings and click **Invoke**.
The JMX MBEAN Operation Result page indicates whether the LDAP authentication settings were updated successfully.

Note:
- If you do not enter a value for a setting, the setting retains its current value.
- If you want to delete an existing value, you have to delete the LDAP server and then reconfigure it by performing the steps described in this procedure.

How to verify the LDAP user credentials

After configuring the LDAP settings, you can verify the LDAP user credentials.

1. Locate the `verifyLDAPCredentials` method.
2. Provide values for `ldapHost`, `username`, and `password`.
3. Click **Invoke**.

 The JMX MBEAN Operation Result page indicates whether the user passes LDAP authentication.

How to map LDAP user groups to UCMDB user groups

1. On the UCMDB server machine, launch your Web browser and enter the following address: `https://localhost:8443/ucmdb-ui`.
2. Enter your login parameters, and select an LDAP server from the drop-down list of LDAP servers.

 Note: The drop-down list is visible only if you configured more than one LDAP server.
3. Go to **Security > LDAP Mapping**, and from the drop-down list, select the LDAP Server for which you want to map the user groups.

 For details, see the section about LDAP Mapping in the *HPE Universal CMDB Administration Guide*.

Note:
- Only the global settings are visible in **Administration > Infrastructure Settings Manager > LDAP General** category.
- Also, the following two settings are available in **Administration > Infrastructure Settings Manager > LDAP General** category: `Check subgroup existence in the LDAP Mapping` and `Enable LDAP Authentication in non interactive flows`.
LDAP Authentication Settings - Example

The following table contains an example of setting values for LDAP authentication:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is LDAP authentication enabled</td>
<td>false</td>
</tr>
<tr>
<td>Is LDAP synchronization enabled</td>
<td>true</td>
</tr>
<tr>
<td>Is case-sensitivity enforced in LDAP authentication enabled</td>
<td>false</td>
</tr>
<tr>
<td>LDAP connection string</td>
<td>ldap://myldap.example.com:389/OU=Users,OU=Dept,OU=US,DC=example,DC=com??sub</td>
</tr>
<tr>
<td>Distinguished Name (DN) Resolution</td>
<td>true</td>
</tr>
<tr>
<td>Root Group</td>
<td>OU=Users,OU=Security Groups,DC=example,DC=com</td>
</tr>
<tr>
<td>Search Retries Count</td>
<td>3</td>
</tr>
<tr>
<td>Priority</td>
<td>2</td>
</tr>
<tr>
<td>Display Users' Group</td>
<td>true</td>
</tr>
<tr>
<td>Group Base</td>
<td>OU=AMRND,OU=Security Groups,DC=example,DC=com</td>
</tr>
<tr>
<td>LDAP Search User</td>
<td>Full user name, for example, John Smith</td>
</tr>
<tr>
<td>Groups name attribute</td>
<td>cn</td>
</tr>
<tr>
<td>Root Group Filter</td>
<td>(objectCategory=group)</td>
</tr>
<tr>
<td>Default Group</td>
<td>AdminsGroup</td>
</tr>
<tr>
<td>Users object class</td>
<td>user</td>
</tr>
<tr>
<td>Group Base Filter</td>
<td>(objectClass=group)</td>
</tr>
<tr>
<td>Use bottom up algorithm for find parent groups</td>
<td>true</td>
</tr>
<tr>
<td>Root groups scope</td>
<td>sub</td>
</tr>
<tr>
<td>Groups member attribute</td>
<td>member</td>
</tr>
<tr>
<td>Group class object</td>
<td>group</td>
</tr>
<tr>
<td>Setting</td>
<td>Value</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Users filter</td>
<td>(&(sAMAccountName=*)(objectclass=user))</td>
</tr>
<tr>
<td>Scope for groups search</td>
<td>sub</td>
</tr>
<tr>
<td>Groups display name attribute</td>
<td>cn</td>
</tr>
<tr>
<td>UUID attribute</td>
<td>sAMAccountName</td>
</tr>
<tr>
<td>User display name attribute</td>
<td>cn</td>
</tr>
<tr>
<td>Groups description attribute</td>
<td>description</td>
</tr>
</tbody>
</table>

Retrieving Current LW-SSO Configuration in Distributed Environment

When UCMDB is embedded in a distributed environment, for example, in a BSM deployment, perform the following procedure to retrieve the current LW-SSO configuration on the processing machine.

To retrieve the current LW-SSO configuration:

1. Launch a Web browser and enter the following address: https://localhost:8443/jmx-console. You may be asked for a user name and password.
2. Locate `UCMDB:service=Security Services` and click the link to open the Operations page.
3. Locate the `retrieveLWSSOConfiguration` operation.
4. Click **Invoke** to retrieve the configuration.

User Lockout Mechanism

The user lockout mechanism allows UCMDB administrators to:

- enable or disable the lockout mechanism
- specify how many failed login attempts are allowed before a user is locked out
- specify the period of time after which the locked accounts will be automatically released
- retrieve a list of locked out users and unlock certain users

In addition, all failed login attempts will be logged, and consecutive attempts are reported to the proper security administration personnel in your organization.
The table below describes the new infrastructure settings available with the lockout mechanism (Administration > Infrastructure Settings Manager > Security Settings):

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>User lockout mechanism enabled</td>
<td>Enable the user lockout mechanism after a number of failed login attempts. Setting the value to false disables this feature. The default value is true.</td>
<td>True</td>
</tr>
<tr>
<td>User lockout timeout value (minutes)</td>
<td>The time value in minutes until the next login attempt can be successfully permitted in case the current user is locked out.</td>
<td>10</td>
</tr>
<tr>
<td>The maximum number of failed login attempts prior to a user lockout</td>
<td>The maximum number of failed login attempts before a user enters the timed lock out state.</td>
<td>3</td>
</tr>
</tbody>
</table>

Also in the JMX console, under Security Services, the following new JMX methods are added for the purpose of unlocking users:

- retrieveCurrentlyLockedOutUsers. Retrieves a list of the currently locked out users and allows individual unlocking.
- unlockUser. Allows unlocking a certain user that is currently locked out by the login mechanism.
Chapter 8: Confidential Manager

This chapter includes:

- Confidential Manager Overview .. 135
- Security Considerations .. 135
- Configure the HPE Universal CMDB Server .. 136
- Definitions .. 137
- Encryption Properties ... 138

Confidential Manager Overview

The Confidential Manager framework solves the problem of managing and distributing sensitive data for HP Universal CMDB and other HP Software products.

Confidential Manager consists of two main components: the client and the server. These two components are responsible for transferring data in a secured manner.

- The Confidential Manager client is a library used by applications to access sensitive data.
- The Confidential Manager server receives requests from Confidential Manager clients, or from third party clients, and performs the required tasks. The Confidential Manager server is responsible for saving the data in a secure manner.

Confidential Manager encrypts credentials in transport, in the client cache, in persistency, and in memory. Confidential Manager uses symmetric cryptography for transporting credentials between the Confidential Manager client and the Confidential Manager server by using a shared secret. Confidential Manager uses various secrets for encryption of cache, persistency, and transport according to the configuration.

For detailed guidelines for managing credential encryption on the Data Flow Probe, see "Data Flow Credentials Management" on page 64.

Security Considerations

- You can use the following key sizes for the security algorithm: 128-, 192-, and 256-bits. The algorithm runs faster with the smaller key but it is less secure. The 128-bit size is secure enough in most cases.
To make the system more secure, use MAC: set useMacWithCrypto to true. For details, see "Encryption Properties" on page 138.

To leverage strong customer security providers, you can use the JCE mode.

Configure the HPE Universal CMDB Server

When working with HPE Universal CMDB, you should configure the secret and crypto-properties of the encryption, using the following JMX methods:

1. On the HPE Universal CMDB Server machine, launch the Web browser and enter the Server address, as follows: https://<UCMDB Server Host Name or IP>:8443/jmx-console.
 You may have to log in with a user name and password.
2. Under UCMDB, click UCMDB:service=Security Services to open the Operations page.
3. To retrieve the current configuration, locate the CMGetConfiguration operation.
 Click Invoke to display the Confidential Manager server configuration XML file.
4. To make changes to the configuration, copy the XML that you invoked in the previous step to a text editor. Make changes according to the table in "Encryption Properties" on page 138.
 Locate the CMSetConfiguration operation. Copy the updated configuration into the Value box and click Invoke. The new configuration is written to the UCMDB Server.
5. To add users to Confidential Manager for authorization and replication, locate the CMAAddUser operation. This process is also useful in the replication process. In replication, the server slave should communicate with the server master, using a privileged user.
 - username. The user name.
 - customer. The default is ALL_CUSTOMERS.
 - resource. The resource name. The default is ROOT_FOLDER.
 - permission. Choose between ALL_PERMISSIONS, CREATE, READ, UPDATE, and DELETE. The default is ALL_PERMISSIONS.
 Click Invoke.
6. If necessary, restart HP Universal CMDB.
 In most cases there is no need to restart the Server. You may need to restart the Server when changing one of the following resources:
 - Storage type
 - Database table name or column names
The creator of the database connection

The connection properties to the database (that is, URL, user, password, driver class name)

Database type

Note:

- It is important that the UCMDB Server and its clients have the same transport crypto-properties. If these properties are changed on the UCMDB Server, you must change them on all clients. (This is not relevant for the Data Flow Probe because it runs on the same process as the UCMDB Server—that is, there is no need for the Transport crypto-configuration.)

- Confidential Manager Replication is not configured by default, and can be configured if needed.

- If Confidential Manager Replication is enabled, and the Transportation initString or any other crypto-property of the master changes, all slaves must adopt the changes.

Definitions

Storage crypto-properties. The configuration that defines how the server holds and encrypts the data (in database or file, which crypto-properties must encrypt or decrypt the data, and so on), how credentials are stored in a secure manner, how encryption is processed, and according to which configuration.

Transport crypto-properties. Transport configuration defines how the server and the clients encrypt the transportation between them, which configuration is used, how credentials are transferred in a secure manner, how encryption is processed, and according to which configuration. You must use the same crypto-properties for transport encryption and decryption, in both server and client.

Replications and replication crypto-properties. Data held securely by Confidential Manager is securely replicated between several servers. These properties define how the data is to be transferred between slave server and master server.

Note:

- The database table that holds the Confidential Manager server configuration is named: CM_CONFIGURATION.

- The Confidential Manager Server default configuration file is located in app-infra.jar and is named defaultCMServerConfig.xml.
Encryption Properties

The following table describes encryption properties. For details on using these parameters, see "Configure the HPE Universal CMDB Server" on page 136.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Recommended value</th>
</tr>
</thead>
<tbody>
<tr>
<td>encryptTransportMode</td>
<td>Encrypt the transported data: true false</td>
<td>true</td>
</tr>
<tr>
<td>encryptDecryptInitString</td>
<td>Password for encryption</td>
<td>Longer than 8 characters</td>
</tr>
<tr>
<td>cryptoSource</td>
<td>Encryption implementation library to use:</td>
<td>lw</td>
</tr>
<tr>
<td></td>
<td>lw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>windowsDPAPI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lwJCECompatible</td>
<td></td>
</tr>
<tr>
<td>lwJCEPBECompatibilityMode</td>
<td>Support previous versions of lightweight cryptography:</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>true</td>
<td></td>
</tr>
<tr>
<td></td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>cipherType</td>
<td>The type of cipher that Confidential Manager uses. Confidential Manager supports one value only: symmetricBlockCipher</td>
<td></td>
</tr>
<tr>
<td>engineName</td>
<td>• AES</td>
<td>AES</td>
</tr>
<tr>
<td></td>
<td>• Blowfish</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3DES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Null (no encryption)</td>
<td></td>
</tr>
<tr>
<td>algorithmModeName</td>
<td>Mode of block encryption algorithm:</td>
<td>CBC</td>
</tr>
<tr>
<td></td>
<td>• CBC</td>
<td></td>
</tr>
<tr>
<td>algorithmPaddingName</td>
<td>Padding standards:</td>
<td>PKCS7Padding</td>
</tr>
<tr>
<td></td>
<td>• PKCS7Padding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PKCS5Padding</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Recommended value</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>keySize</td>
<td>Depends on algorithm (what engineName supports)</td>
<td>256</td>
</tr>
<tr>
<td>pbeCount</td>
<td>The number of times to run the hash to create the key from encryptDecryptInitString. Any positive number.</td>
<td>1000</td>
</tr>
<tr>
<td>pbeDigestAlgorithm</td>
<td>Hashing type:</td>
<td>SHA256</td>
</tr>
<tr>
<td></td>
<td>• SHA1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SHA256</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MD5</td>
<td></td>
</tr>
<tr>
<td>encodingMode</td>
<td>ASCII representation of the encrypted object:</td>
<td>Base64Url</td>
</tr>
<tr>
<td></td>
<td>• Base64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Base64Url</td>
<td></td>
</tr>
<tr>
<td>useMacWithCrypto</td>
<td>Defines whether MAC is used with the cryptography:</td>
<td>false</td>
</tr>
<tr>
<td></td>
<td>• true</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• false</td>
<td></td>
</tr>
<tr>
<td>macType</td>
<td>Type of message authentication code (MAC):</td>
<td>hmac</td>
</tr>
<tr>
<td></td>
<td>• hmac</td>
<td></td>
</tr>
<tr>
<td>macKeySize SHA256</td>
<td>Depends on Mac algorithm</td>
<td>256</td>
</tr>
<tr>
<td>macHashName</td>
<td>The Hash Mac algorithm:</td>
<td>SHA256</td>
</tr>
<tr>
<td></td>
<td>• SHA256</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 9: High Availability Hardening

This chapter includes:

Cluster Authentication ... 140
Cluster Message Encryption ... 141
Changing the Key in the key.bin ... 142

Cluster Authentication

To enable cluster authentication:

1. In UCMDB, go to Administration > Infrastructure Settings Manager.
2. Find the setting Enable joining High Availability cluster authentication and set it to true.
3. Provide a single server authentication keystore (certificate + private and public keys) in JKS format. This keystore will be placed on all the servers and used for authenticating when connecting to a high availability cluster.

Place the keystore in the following location: `<UCMDB installation folder>\conf\security` and name it `cluster.authentication.keystore`.

Note: The UCMDB comes with this keystore pre-configured out-of-the-box. This keystore is the same for all clean UCMDB installations, and thus not secure. If you wish to securely authenticate join requests, delete this file and create a new one.

4. Generate a cluster authentication keystore as follows:
 a. From C:\hp\UCMDB\UCMDBServer\bin\jre\bin, run the following command:

      ```
      keytool -genkey -alias hpcert -keystore <UCMDB installation folder>\conf\security\cluster.authentication.keystore -keyalg RSA
      ```

 The console dialog box opens and asks you for a new keystore password.

 b. The default password is `hppass`. If you want to use a different password, update the server by running the following JMX method: `UCMDB:service=High Availability Services: changeClusterAuthenticationKeystorePassword`
c. In the console dialog box, answer the question **What is your first and last name?** by entering the name of the cluster.

d. Enter the other parameters according to your organization's details.

e. Enter a key password. The key password must be the same as the keystore password.

 A JKS keystore is created in `<UCMDB installation folder>\conf\security\cluster.authentication.keystore`

5. Replace the old `<UCMDB installation folder>\conf\security\cluster.authentication.keystore` on all the servers in the cluster with the new keystore.

6. Restart all the servers in the cluster.

Cluster Message Encryption

Use cluster message encryption to encrypt all the messages in the cluster.

To enable cluster message encryption:

1. In UCMDB, go to Administration > Infrastructure Settings Manager.

2. Find the setting **Enable High Availability cluster communication encryption** and set it to **true**.

3. Provide a secret key for symmetric encryption on all the servers. The key should be placed in a keystore of type JCEKS in the following location `<UCMDB installation folder>\conf\security\cluster.encryption.keystore`.

 Note: The UCMDB comes with this keystore pre-configured out of the box. This keystore is the same for all clean UCMDB installations, and thus not secure. If you wish to securely encrypt cluster messages, please delete this file, and create a new one by following this procedure.

4. From `<UCMDB installation folder>\bin\jre\bin`, run the following command:

   ```
   Keytool -genseckey -alias hpcert -keystore `<UCMDB installation folder>\conf\security\cluster.encryption.keystore` -storetype JCEKS
   ```

5. You will be asked for the new keystore password. The default password is “hppass”. If you want to use a different password, you need to update the server by running the following JMX method:

 UCMDB:service=High Availability Services: changeClusterEncryptionKeystorePassword

6. Replace the old `<UCMDB installation folder>\conf\security\cluster.encryption.keystore` of all
the servers in the cluster with this new keystore.

7. Restart the servers.

Changing the Key in the key.bin

In a High Availability environment with several servers, change the key in the key.bin as follows:

1. Go to the writer machine in the JMX. You can choose any machine in the cluster and click the writer link on the top of each page.

2. In the UCMDB section of the console, click UCMDB:service=Discovery Manager.

3. Change the key in one of the following ways:
 - Click changeEncryptionKey (this imports the existing encryption key)
 - Click generateEncryptionKey (this generates a random encryption key)

4. On the writer machine, go to the file system and find the key.bin at:
 C:\hp\UCMDB\UCMDBServer\conf\discovery\key.bin

5. Copy the key.bin from the location on the writer machine to each one of other machines in the cluster to the folder: C:\hp\UCMDB\UCMDBServer\conf\discovery\customer_1\ and rename the destination file (for example, key_new.bin).

6. For each of the other servers (readers) do the following:
 a. Switch the reader to be a writer (you can do this from the High Availability JMX) and wait until it changes.
 b. Connect to the JMX of the current writer and click UCMDB:service=Discovery Manager.
 c. Click and invoke changeEncryptionKey, use the same details you entered in step 3 (for newKeyFileName, use the new name you assigned at step 5).
 d. Verify that you get the following message: Key was created successfully.
Chapter 10: Database Hardening

This chapter includes:

- How to Mark Sensitive Settings and Enable Storing Encrypted Data in the Database Using JMX... 143
- Configure UCMDB to Connect Securely to Microsoft SQL Server ... 145
- Configure Universal CMDB and Configuration Manager to Support Oracle Advanced Security Option (ASO) ... 146

How to Mark Sensitive Settings and Enable Storing Encrypted Data in the Database Using JMX

UCMDB administrators can mark sensitive settings and enabling storing encrypted values for the sensitive settings in the database by using the following JMX methods added in the UCMDB:service=Settings Services category:

- **listSensitiveSettings** - Returns the list of settings that are marked as sensitive.
- **markSettingAsSensitive** - Marks a setting as sensitive. Usually sensitive settings contain confidential data. If a setting is marked as sensitive, its data will be encrypted when stored in the database.

 Note: A setting can be marked as sensitive only when its value has been changed. If a setting does not have a value or if the value is out of the box, then the setting cannot be marked as sensitive.

- **markSettingAsNonsensitive** - Marks a setting as non-sensitive. Non-sensitive settings will have the value stored in plain text in database. This method is also used to decrypt the sensitive settings you encrypted using the **markSettingAsSensitive** method.

To mark a setting as sensitive,

1. On the UCMDB server, launch the Web browser and enter the following address:

2. Click **UCMDB:service=Settings Services** to open the JMX MBEAN View page.

3. Click the **markSettingAsSensitive** method.

4. Enter the name of the setting you would like to mark as sensitive.

5. Click **Invoke**.

To mark a setting as non-sensitive,

1. On the UCMDB server, launch the Web browser and enter the following address:

 https://localhost:8443/jmx-console.

2. Click **UCMDB:service=Settings Services** to open the JMX MBEAN View page.

3. Click the **markSettingAsNonsensitive** method.

4. Enter the name of the setting you would like to mark as non-sensitive.

5. Click **Invoke**.

To view a list of sensitive settings,

1. On the UCMDB server, launch the Web browser and enter the following address:

 https://localhost:8443/jmx-console.

2. Click **UCMDB:service=Settings Services** to open the JMX MBEAN View page.

3. Click the **listSensitiveSettings** method.

4. Click **Invoke**.

 A list of settings that are marked as sensitive is returned.

Note: The following existing settings are already encrypted in the database and cannot be marked as sensitive:

- **ha.cluster.authentication.keystore.password**
- **ha.cluster.authentication.shared.secret**
- **ha.cluster.message.encryption.keystore.password**
- **ssl.server.keystore.password**
- **ssl.server.truststore.password**

Starting from version 10.21, two new OOTB settings are marked as sensitive by default:
- `java.naming.ldap.search.password`
- `jetty.connections.http.probe.basicAuthentication.defaultPassword`

Starting from version 10.30, the following OOTB settings are encrypted by the master key all the time. They cannot be marked as non-sensitive, and will not display if you invoke the `listSensitiveSettings` JMX method:

- `java.naming.ldap.search.password`
- `java.naming.provider.url`

Configure UCMDB to Connect Securely to Microsoft SQL Server

This section describes how to configure UCMDB to connect securely to Microsoft SQL Server.

Configure UCMDB to connect securely to Microsoft SQL Server

1. **Prerequisite**

 The Microsoft SQL Server to which UCMDB will connect needs to accept encrypted connections (SSL). For instructions about how to enable this, see https://support.microsoft.com/en-us/kb/316898 or contact your DBA.

2. **Configure UCMDB’s JDBC drivers**
 a. Stop the UCMDB server.
 b. Check if the `conf/jdbc.properties` file exists. If not, create it.

 Note: The `jdbc.properties` file must be encoded in ANSI. If the file is UFT-8 encoded, the properties will be ignored.

 c. Add the following settings into the `jdbc.properties` file:

   ```
   SQLServer = ddmssql
   ddmssql.EncryptionMethod=SSL
   ddmssql.ValidateServerCertificate=true
   ```

 d. Save the file.
 e. Restart the UCMDB server.
Note: In case the Microsoft SQL Server is using a certificate that is not signed by a recognized Certificate Authority (CA) like a self-signed certificate, you need to import the Microsoft SQL Server database's certificate into the UCMDB Server's cacerts keystore (located in the `<INSTALL_FOLDER>\UCMDBServer\bin\jre\lib\security\cacerts` directory).

To import the Microsoft SQL Server's certificate, run the following command:

```
"<INSTALL_FOLDER>\UCMDBServer\bin\jre\bin\keytool.exe" -import -noprompt -trustcacerts -alias SQL_Server_Cert -file "<PATH TO SQL SERVER CERTIFICATE>" -keystore "<INSTALL_FOLDER>\UCMDBServer\bin\jre\lib\security\cacerts" -storepass changeit
```

To verify that the certificate was successfully imported, run the following command:

```
"<INSTALL_FOLDER>\UCMDBServer\bin\jre\bin\keytool.exe" -list -keystore "<INSTALL_FOLDER>\UCMDBServer\bin\jre\lib\security\cacerts" -storepass changeit -alias SQL_Server_Cert
```

Configure Universal CMDB and Configuration Manager to Support Oracle Advanced Security Option (ASO)

This section describes how to configure UCMDB and CM to support Oracle Advanced Security Option (ASO).

Note: Because the properties for ASO are not included in installation, additional steps described below are required. When connecting to Oracle ASO, HPE recommends to perform the installation first, and then switch the UCMDB server, CM, and database to ASO.

This section includes:

- Configure Universal CMDB to Support Oracle Advanced Security Option (ASO)
- Enable support for Oracle ASO on Configuration Manager

Configure Universal CMDB to Support Oracle Advanced Security Option (ASO)

1. Add the following lines to the `sqlnet.ora` file:
Note:

- The database administrator privilege is required to perform the above step.
- Only SHA1 encryption is supported. For details, see the following:
 - Types of Oracle Advanced Security Data Integrity Algorithms supported by DataDirect:

    ```
    
    DataDirect supplies the JDBC drivers that the UCMDB installation is using to connect to the Oracle database.
    ```
 - Types of Oracle Advanced Security Data Integrity Algorithms supported by Oracle, see chapter 1.2.1.2 Data Integrity:

    ```
    https://docs.oracle.com/cd/E11882_01/network.112/e40393/asointro.htm#ASOAG010
    
    For information about SSL (ASO) properties, see https://docs.oracle.com/cd/B28359_01/ja.111/b31224/clntsec.htm.
    ```

2. On the UCMDB Server, perform the following:
 a. Open the directory `<UCMDB_install_dir>\UCMDBServer\conf`. Locate the `jdbc.properties` file and add the following lines:

 For Oracle drivers (which are OOTB drivers used by UCMDB Server):

   ```
   Oracle=orcl
   orcl.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL=REQUIRED
   orcl.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES=AES256
   orcl.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL=REQUIRED
   orcl.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES=SHA1
   ```

 For DataDirect drivers:

   ```
   Oracle=ddoracle
   ddooracle.EncryptionTypes=AES256
   ddooracle.EncryptionLevel=required
   ```
ddoracle.DataIntegrityTypes=SHA1
ddooracle.DataIntegrityLevel=required

Note:
- If the file does not exist, create an empty `jdbc.properties` file under the above folder and add the above lines in it.
- For instructions about how to switch between DataDirect drivers and native Oracle drivers, see "Data Push" in the *HPE Universal CMDB Data Flow Management Guide.*

b. Open the directory `<UCMDB_install_dir>\UCMDBServer\bin\jre\lib\security`. Replace the `local_policy.jar` and `US_export_policy.jar` files with the similar jar files from the Zulu Cryptography Extension Kit provided by OpenJDK.

c. Restart the UCMDB Server.

Note: If upgrading UCMDB to version 10.30, after the upgrade, open the `<UCMDB_install_dir>\UCMDBServer\bin\jre\lib\security` directory and replace the `local_policy.jar` and `US_export_policy.jar` files with the similar jar files from the Zulu Cryptography Extension Kit provided by OpenJDK.

Caution: It is strongly recommended not to perform any downgrade action if the UCMDB is configured to support Oracle ASO.

Enable support for Oracle ASO on Configuration Manager

To enable ASO on CM,

1. Stop Configuration Manager.

2. Copy the *Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files* for Java 8 to the `javal\windows\x86_64\lib\security` folder.

3. Open the `datamodelContext.xml` file (in the `servers\server-0\webapps\cnc\WEB-INF\classes\META-INF\spring` folder) using a text editor, and then copy and add the following `property` tag to `bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource":`

   ```xml
   <property name="properties">
   ```
4. Save the file.

5. Start Configuration Manager.
Send documentation feedback

If you have comments about this document, you can contact the documentation team by email. If an email client is configured on this system, click the link above and an email window opens with the following information in the subject line:

Feedback on Hardening Guide (Universal CMDB 10.31)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a web mail client, and send your feedback to cms-doc@hpe.com.

We appreciate your feedback!